Menu
La regla de Cramer

La regla de Cramer

Consideremos un sistema d...

¿Necesitas ayuda con las matemáticas? ¿Piensas que nunca serás capaz de entenderlas?

¿Necesitas ayuda con las matemática…

Ahora puedes tener un pro...

Completando cuadrados. Aplicación al cálculo de primitivas o integrales indefinidas

Completando cuadrados. Aplicación a…

Supongamos que me piden c...

La Universidad Europea de Madrid (UEM)

La Universidad Europea de Madrid (U…

La Universidad Europea de...

Cuadratura de un segmento de parábola

Cuadratura de un segmento de parábo…

Una forma de acercarse al...

Ejercicios de aplicaciones de las derivadas y del teorema del valor medio

Ejercicios de aplicaciones de las d…

Se proponen a continuaci&...

Aplicaciones de las derivadas. El teorema del valor medio

Aplicaciones de las derivadas. El t…

Ya hemos hablado en un pa...

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. R…

Cuando en las matem&aacut...

Prev Next

Elementos filtrados por fecha: Martes, 07 Febrero 2017

Completando cuadrados. Aplicación al cálculo de primitivas o integrales indefinidas

Supongamos que me piden calcular una primitva de la función \(f(x)=\dfrac{1}{x^2-3x+5}\). O lo que es lo mismo, me piden calcular la siguiente integral indefinida:

\[\int\frac{1}{x^2-3x+5}\,dx\]

Naturalmente intentaré descomponer la fracción \(\dfrac{1}{x^2-3x+5}\) en fracciones simples. Pero esto no es posible porque el polinomio \(x^2-3x+5\) no tiene raíces reales (al intentar resolver la ecuación de segundo grado el discriminante es menor que cero).

En estos casos se procede a utilizar una técnica conocida como "completar cuadrados". Veamos cómo funciona.

Se trata de escribir el polinomio \(x^2-3x+5\) como un cuadrado más una cierta cantidad. Es decir, tenemos que conseguir el polinomio \(x^2-3x+5\) "completando un cuadrado". Eso, como veremos, nos permitirá calcular la intergral indefinida.

Observemos que los coeficientes del polinomio \(x^2-3x+5\) son \(a=1\), \(b=-3\) y \(c=5\).

En un primer paso lo que haremos es multiplicar por \(4a\), que en este caso es \(4\). De este modo el polinomio se convierte en \(4x^2-12x+20\). Obsérvese que el primer término es el cuadrado de \(2x\). En general si multiplicamos por \(4a\) el primer término se convertirá en \(4a^2\) que es el cuadrado de \(2a\).

En un segundo paso vamos a sumar y a restar \(b^2\). En nuestro caso \(b^2=9\), con lo que tenemos \(4x^2-12x+9-9+20\). Esta última expresión la podemos escribir también así \((2x-3)^2+11\).

¿Qué hemos hecho? En realidad hemos escrito el polinomio de \(x^2-3x+5\) de otra manera:

\[x^2-3x+5=\frac{1}{4}(4x^2-12x+9-9+20)=\frac{1}{4}((2x-3)^2+11)\]

Ahora podemos escribir la integral indefinida así:

\[\int\frac{1}{x^2-3x+5}\,dx=\int\frac{1}{\frac{1}{4}((2x-3)^2)+11)}\,dx=4\int\frac{1}{(2x-3)^2+11}\,dx\]

Esta última integral la podemos retocar hasta conseguir resolverla:

\[4\int\frac{1}{(2x-3)^2+11}\,dx=4\int\frac{\displaystyle\frac{1}{11}}{\displaystyle\frac{(2x-3)^2}{11}+1}\,dx=\]

\[=\frac{4}{11}\int\frac{1}{\displaystyle\left(\frac{2x-3}{\sqrt{11}}\right)^2+1}\,dx=\frac{4}{11}\cdot\frac{\sqrt{11}}{2}\int\frac{\displaystyle\frac{2}{\sqrt{11}}}{\displaystyle\left(\frac{2x-3}{\sqrt{11}}\right)^2+1}\,dx\]

Por tanto

\[\int\frac{1}{x^2-3x+5}\,dx=\frac{2\sqrt{11}}{11}\cdot\text{arctg}\left(\frac{2x-3}{\sqrt{11}}\right)+C\]

Donde hemos utilizado que

\[\int\frac{f'(x}{f(x)^2+1}\,dx=\text{arctg}\,f(x)+C\]

En general si el polinomio \(ax^2+bx+cx\) no tiene raíces reales, es posible demostrar que

\[\int\frac{1}{ax^2+bx+c}\,dx=\frac{2}{\sqrt{4ac-b^2}}\cdot\text{arctg}\frac{2ax+b}{\sqrt{4ac-b^2}}+C\]

Puedes ver el desarrollo completo aquí.

Leer más ...
Suscribirse a este canal RSS

lasmatematicas.eu

Aplicaciones

Sígueme

webs de matemáticas