Menu
La regla de Cramer

La regla de Cramer

Consideremos un sistema d...

¿Necesitas ayuda con las matemáticas? ¿Piensas que nunca serás capaz de entenderlas?

¿Necesitas ayuda con las matemática…

Ahora puedes tener un pro...

Completando cuadrados. Aplicación al cálculo de primitivas o integrales indefinidas

Completando cuadrados. Aplicación a…

Supongamos que me piden c...

La Universidad Europea de Madrid (UEM)

La Universidad Europea de Madrid (U…

La Universidad Europea de...

Cuadratura de un segmento de parábola

Cuadratura de un segmento de parábo…

Una forma de acercarse al...

Ejercicios de aplicaciones de las derivadas y del teorema del valor medio

Ejercicios de aplicaciones de las d…

Se proponen a continuaci&...

Aplicaciones de las derivadas. El teorema del valor medio

Aplicaciones de las derivadas. El t…

Ya hemos hablado en un pa...

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. R…

Cuando en las matem&aacut...

Prev Next

Longitudes, áreas y semejanza de triángulos

El otro día me encontré en Twitter con un problema de matemáticas en el que se involucraban longitudes y áreas. Me pareció atractivo y pensé en mis alumnos de secundaria. Hemos trabajado en clase suficientes "cosas" de matemáticas como para que un alumno que ha terminado la secundaria obligatoria (incluso antes) sea capaz de atacar y solucionar este problema. ¿Te atreves con él?

El enunciado es el siguiente (puedes ver la versión original aquí):

La línea divide al triángulo en dos partes de igual área. ¿Cuál es la longitud de la línea?

semejanza 01

La figura anterior la he retocado un poco para poder "meterle mano" al problema con más facilidad.

semejanza 02

Como ves, el objetivo es hallar la longitud del segmento de color rojo, o sea, \(x\).

El triángulo \(ABC\) es rectángulo. Por tanto es muy fácil, haciendo uso del teorema de Pitágoras, hallar el lado \(\overline{BC}\):

\[25^2=15^2+\overline{BC}^2\Rightarrow\overline{BC}=\sqrt{25^2-15^2}\Rightarrow\overline{BC}=20\,\text{cm}\]

También es muy fácil darse cuenta de que los triángulos \(ABC\) y \(AB'C'\) son semejantes (están en posición de Tales). Por tanto:

\[\frac{x}{y}=\frac{20}{15}\Rightarrow y=\frac{15x}{20}\Rightarrow y=\frac{3x}{4}\qquad(1)\]

Ahora vamos a hacer uso del dato que nos da el enunciado: el área del triángulo \(AB'C'\) es igual que el área del cuadrilátero \(B'BCC'\).

El área del triángulo \(AB'C'\) es

\[\dfrac{xy}{2}\]

El área del cuadrilátero \(B'BCC'\) es la del triángulo \(ABC\) menos la del triángulo \(AB'C'\):

\[\frac{20\cdot15}{2}-\frac{xy}{2}\]

Como las dos áreas son iguales:

\[\dfrac{xy}{2}=\frac{20\cdot15}{2}-\frac{xy}{2}\Rightarrow150=xy\]

Sustituyendo \(y\) por el valor obtenido en \((1)\) tenemos:

\[150=x\frac{3x}{4}\Rightarrow x^2=200\Rightarrow x=\sqrt{200}=10\sqrt{2}\approx14,14\,\text{cm}\]

Leer más ...

Lúnulas y el problema de la cuadratura del círculo. Cuadrando áreas limitadas por líneas curvas

Una lúnula es cualquiera de las dos figuras semejantes a una luna creciente (o menguante, según la que se tome) que se obtienen mediante la intersección de dos círculos.

Como el área \(A\) de un círculo es \(A=\pi\cdot r^2\), donde \(r\) es el radio del círculo, entonces el número \(\pi\) es la razón entre el área del círculo y su radio al cuadrado. Es decir: \(\pi=\dfrac{A}{r^2}\). Si llamamos \(d\) al diámetro del círculo, entonces \(d=2r\Rightarrow r=\dfrac{d}{2}\). Sustituyendo en la expresión anterior:

\[\pi=\frac{A}{\left(\frac{d}{2}\right)^2}=\frac{A}{\frac{d^2}{4}}=\frac{4A}{d^2}\Rightarrow\frac{\pi}{4}=\frac{A}{d^2}\]

O sea, la razón entre el área del círculo y el cuadrado levantado sobre su diámentro es una cantidad constantemente igual a \(\dfrac{\pi}{4}\). Como \(\pi<4\), entonces \(\dfrac{\pi}{4}=\dfrac{A}{d^2}<1\Rightarrow A<d^2\)lo que demuestra también que el área del círculo es menor que el área del cuadrado levantado sobre su diámetro.

Hipócrates de Quíos, preocupado con el problema de la cuadratura del círculo (problema que ahora sabemos que es irresoluble), usó las razones anteriores, constatemente iguales a los números \(\pi\) y \(\dfrac{\pi}{4}\), para mostrar cómo se podía cuadrar un área limitada por líneas curvas.

En la figura siguiente se muestra una lúnula \(L\). Demostraremos que el área de la lúnula es igual al área del triángulo \(T\).

lunula

La lúnula \(L\), junto con el segmento circular \(S\) delimitado por el lado \(l\) del triángulo, forma un semicírculo de diámetro precisamente \(l\). A su vez, el sector \(S\) y el triángulo \(T\) forman un cuadrante del círculo de diámetro \(d\). Ahora bien, las áreas de esos círculos tienen la misma razón con las áreas de los cuadrados levantados sobre sus diámetros:

\[\frac{L+S}{l^2}=\frac{2\cdot(S+T)}{d^2}\]

Pero sabemos que el triángulo inscrito en el semicírculo es rectángulo, de manera que, por el teorema de Pitágoras, \(d^2=l^2+l^2=2l^2\). Lo que insertado en la fórmula anterior da:

\[\frac{L+S}{l^2}=\frac{2\cdot(S+T)}{2l^2}=\frac{S+T}{l^2}\]

Y, por tanto, \(L+S=S+T\Rightarrow L=T\). O sea, el área \(L\) de la lúnula es igual al área \(T\) del triángulo.

El que el área de una lúnula, con sus límites curvos, sea igual al área de un triángulo, con sus lados rectos, construido de manera precisa (usando regla y compás) a partir de la misma lúnula, hizo concebir esperanzas de que dado un círculo sería posible construir a partir de él un cuadrado, o un triángulo, de igual área. Y a buscar esa construcción se dedicaron los matemáticos griegos. Con ningún éxito, porque cuadrar el círculo (con regla y compás) es misión imposible, pero eso no se supo hasta finales del siglo XIX, aunque se sospechó mucho antes. 


Fuente:

Pasiones, piojos, dioses... y matemáticas, de Antonio J. Durán

Leer más ...

8 usos de la trigonometría para el cálculo de alturas y distancias

Con unas nociones básicas de trigonometría se puede hacer uso de la misma para calcular alturas y distancias entre puntos en situaciones muy diversas. Presentamos aquí 8 usos de la trigonometría para el cálculo de alturas y distancias. Son aplicaciones prácticas en las que se supone que contamos con el material necesario para medir ciertos ángulos (ángulos verticales, sobre todo de elevación, y ángulos horizontales) como, por ejemplo, un teodolito. En Topografía, el estudio de instrumentos y aparatos de medición es fundamental, pero eso es materia de estudios superiores. En todo caso estos apuntes sobre instrumentos topográficos son muy completos para el que desee echarles un vistazo. Sin embargo, a un nivel de matemáticas en Bachillerato, lo que interesa es ver la manera de establecer un método para solucionar el problema que se plantea, usando nociones básicas de trigonometría, por ejemplo, el teorema de los senos y/o el teorema del coseno.

Usos de la trigonometría. Cálculo de alturas y distancias

Leer más ...

Usos de la trigonometría. Cálculo de alturas y distancias (VIII)

Ver artículo en formato imprimible (pdf) aquí

Distancia entre dos puntos inaccesibles

Deseamos calcular la distancia \(\overline{AB}=x\) entre dos puntos \(A\) y \(B\) a los que no tenemos acceso, tal y como se muestra en la figura.

trig13

Para ello medimos una base arbitraria \(\overline{CD}\), situada en el mismo plano que \(A\) y \(B\). Desde \(C\) medimos los ángulos \(\widehat{ACD}=\alpha\) y \(\widehat{BCD}=\beta\). Desde \(D\) medimos también los ángulos \(\widehat{CDB}=\gamma\) y \(\widehat{CDA}=\delta\). Con estos datos también podemos conocer el ángulo \(\widehat{CAD}=180^{\text{o}}-\alpha-\delta\) y el ángulo \(\widehat{CBD}=180^{\text{o}}-\beta-\gamma\).

El método a seguir consiste en calcular previamente \(\overline{AC}\) en el triángulo \(ACD\) aplicando el teorema de los senos:

\[\frac{\overline{AC}}{\text{sen}\,\widehat{CDA}}=\frac{\overline{CD}}{\text{sen}\,\widehat{CAD}}\Rightarrow\overline{AC}=\frac{\overline{CD}\cdot\text{sen}\,\delta}{\text{sen}(180^{\text{o}}-\alpha-\delta)}\]

A continuación se calcula \(\overline{BC}\) en el triángulo \(BCD\) aplicando otra vez el teorema de los senos:

\[\frac{\overline{BC}}{\text{sen}\,\widehat{BDC}}=\frac{\overline{CD}}{\text{sen}\,\widehat{CBD}}\Rightarrow\overline{BC}=\frac{\overline{CD}\cdot\text{sen}\,\gamma}{\text{sen}(180^{\text{o}}-\beta-\gamma)}\]

Por último calculamos \(\overline{AB}=x\) en el triángulo \(ABC\) aplicando el teorema del coseno:

\[x^2=\overline{AC}^2+\overline{BC}^2-2\cdot\overline{AC}\cdot\overline{BC}\cdot\cos(\alpha-\beta)\]

Ejemplo

Para calcular la distancia entre dos puntos inaccesibles \(A\) y \(B\), se ha medido una base \(\overline{CD}\) de 240 metros, situada en el mismo plano que \(A\) y \(B\); también se han medido los ángulos \(\widehat{DCA}=106^{\text{o}}\), \(\widehat{DCB}=39^{\text{o}}\), \(\widehat{CDB}=122^{\text{o}}\) y \(\widehat{CDA}=41^{\text{o}}\). Calcular la distancia entre \(A\) y \(B\).

Solución

trig14

Llamemos \(x\) a la distancia entre \(A\) y \(B\). En este caso, según los datos del problema \(\alpha=106^{\text{o}}\), \(\beta=39^{\text{o}}\), \(\gamma=122^{\text{o}}\) y \(\delta=41^{\text{o}}\). Calculemos \(\overline{AC}\) y \(\overline{BC}\).

\[\overline{AC}=\frac{\overline{CD}\cdot\text{sen}\,\delta}{\text{sen}(180^{\text{o}}-\alpha-\delta)}=\frac{240\cdot\text{sen}\text{sen}41^{\text{o}}}{\text{sen}33^{\text{o}}}\approxeq289,1\]

\[\overline{BC}=\frac{\overline{CD}\cdot\text{sen}\,\gamma}{\text{sen}(180^{\text{o}}-\beta-\gamma)}=\frac{240\cdot\text{sen}122^{\text{o}}}{\text{sen}19^{\text{o}}}\approxeq325,16\]

Finalmente calculamos \(x\) aplicando el teorema del coseno en el triángulo \(ABC\):

\[x^2=\overline{AC}^2+\overline{BC}^2-2\cdot\overline{AC}\cdot\overline{BC}\cdot\cos(\alpha-\beta)=\]

\[=289.1^2+325.16^2-2\cdot289.1\cdot625.16\cdot\cos37^{\text{o}}\approxeq333167,23\Rightarrow\]

\[\Rightarrow x=\sqrt{333167,23}\Rightarrow x\approxeq577,2\]

Por tanto, la distancia entre \(A\) y \(B\) es, aproximadamente, \(577,2\) metros.

Leer más ...

Usos de la trigonometría. Cálculo de alturas y distancias (VII)

Ver artículo en formato imprimible (pdf) aquí

Altura de un objeto situado sobre un montículo, desde un terreno horizontal sin obstáculos

Deseamos calcular la altura \(\overline{AB}=x\) de un objeto situado sobre un montículo o punto elevado, desde un terreno horizontal sin obstáculos en el que estamos situados, tal y como se muestra en la figura.

trig11

Elegimos un punto \(C\) arbitrario y medimos el ángulo de elevación de \(A\), que llamaremos \(\alpha\). Moviéndonos en el plano determinado por \(A\), \(B\) y \(C\) nos desplazamos hasta un punto \(D\) y medimos \(\overline{CD}=d\), desde donde calculamos los respectivos ángulos de elevación de \(A\) y de \(B\), a los que llamaremos \(\beta\) y \(\gamma\), respectivamente.

El método a seguir consiste en calcular \(\overline{AD}\) en el triángulo \(ACD\) aplicando el teorema de los senos. Téngase en cuenta que en el triángulo \(ACD\) conocemos \(\overline{CD}=d\) y dos ángulos, \(\widehat{ACD}=\alpha\) y \(\widehat{ADC}=180^{\text{o}}-\beta\), lo que significa que también podemos calcular el tercero de los ángulos: \(\widehat{CAD}=180^{\text{o}}-(\alpha+180^{\text{o}}-\beta)=\beta-\alpha\).

\[\frac{\overline{AD}}{\text{sen}\,\widehat{ACD}}=\frac{d}{\text{sen}\,\widehat{CAD}}\Rightarrow\overline{AD}=\frac{d\cdot\text{sen}\,\alpha}{\text{sen}(\beta-\alpha)}\]

Finalmente, con el resultado anterior, se calcula \(x\) en el triángulo \(ABD\) aplicando otra vez el teorema de los senos. En este triángulo conocemos un lado, \(\overline{AD}\) y dos ángulos, \(\widehat{ADB}=\beta-\gamma\) y \(\widehat{DAB}=90^{\text{o}}-\beta\). Al igual que anteriormente esta información permite calcular el tercero de los ángulos: \(\widehat{ABD}=180^{\text{o}}-(\beta-\gamma+90^{\text{o}}-\beta)=90^{\text{o}}+\gamma\).

\[\frac{x}{\text{sen}\,\widehat{ADB}}=\frac{\overline{AD}}{\text{sen}\,\widehat{ABD}}\Rightarrow x=\frac{\overline{AD}\cdot\text{sen}(\beta-\gamma)}{\text{sen}(90^{\text{o}}+\gamma)}\]

Ejemplo

Una columna está situada sobre un peñón. Desde un punto \(C\) la parte superior de la misma se ve con un ángulo de elevación de \(55^{\text{o}}\). Situándonos en un punto \(D\), 40 metros más cerca, se constata que dicho ángulo de elevación se transforma en \(80^{\text{o}}\) y que el ángulo de elevación a la base de la columna es de \(60^{\text{o}}\). ¿Cuál es la altura de la columna?

trig12

Solución

Si nos fijamos en la figura anterior, los datos que proporciona el enunciado del problema son los siguientes. \(\alpha=55^{\text{o}}\), \(\beta=80^{\text{o}}\), \(\gamma=60^{\text{o}}\) y \(d=40\) metros. Entonces, en el triángulo \(ACD\) tenemos:

\[\overline{AD}=\frac{d\cdot\text{sen}\,\alpha}{\text{sen}(\beta-\alpha)}=\frac{40\cdot\text{sen}\,55^{\text{o}}}{\text{sen}\,25^{\text{o}}}\approxeq77,53\]

Por tanto, en el triángulo \(ABD\):

\[x=\frac{\overline{AD}\cdot\text{sen}(\beta-\gamma)}{\text{sen}(90^{\text{o}}+\gamma)}=\frac{77.53\cdot\text{sen}\,20^{\text{o}}}{\text{sen}\,150^{\text{o}}}\approxeq53,03\]

Es decir, la altura \(\overline{AB}\) de la columna es, aproximadamente, 53,03 metros.

Leer más ...

Usos de la trigonometría. Cálculo de alturas y distancias (VI)

Ver artículo en formato imprimible (pdf) aquí

Altura de un punto de pie inaccesible desde un terreno horizontal con obstáculos

Deseamos calcular la altura \(\overline{AB}=x\) de un punto de pie inaccesible desde un terreno horizontal con obstáculos, tal y como se muestra en la figura (piénsese que la figura está dibujada en perspectiva).

trig9

Tomemos una base auxiliar \(\overline{CD}=d\). Desde \(C\) medimos el ángulo de elevación de \(A\), que llamaremos \(\alpha\), el ángulo \(\widehat{ACD}\), al que llamaremos \(\beta\) y, finalmente, desde \(D\) mediremos también el ángulo \(\widehat{ADC}\), al que llamaremos \(\gamma\).

El método a seguir consiste en calcular \(\overline{AC}\) en el triángulo \(ACD\) y luego calcular \(x\) en el triángulo rectángulo \(ABC\). Aplicando el teorema de los senos en el triángulo \(ACD\):

\[\frac{\overline{AC}}{\text{sen}\,\gamma}=\frac{d}{\text{sen}\,\widehat{CAD}}\Rightarrow\overline{AC}=\frac{d\cdot\text{sen}\,\gamma}{\text{sen}\,(180^{\text{o}}-\gamma-\beta)}\]

Finalmente, en el triángulo rectángulo \(ABC\) se tiene:

\[\text{sen}\,\alpha=\frac{x}{\overline{AC}}\Rightarrow x=\overline{AC}\cdot\text{sen}\,\alpha\]

Ejemplo

Desde un barco fondeado frente a la costa se desea calcular la altura \(\overline{AB}\) de una torre. Para ello, desde la proa \(C\), a 4 metros sobre el nivel del mar, se mide el ángulo de elevación de \(A\): \(7^{\text{o}}\), y \(\widehat{ACD}=85^{\text{o}}\). Asimismo, desde la popa \(D\), también a 4 metros sobre el nivel del mar, se mide el ángulo \(\widehat{ACD}=87^{\text{o}}\) (ver figura). Si la distancia entre la proa y la popa es \(\overline{CD}=60\) metros, calcular la altura de la torre.

trig10

Solución

Llamemos \(B\,'\) al punto de la torre situado al nivel de la cubierta del barco (4 metros sobre el nivel del mar) y que se toma como referencia para medir el ángulo de elevación de \(A\): \(\alpha=7^{\text{o}}\). Llamaremos \(x=\overline{AB\,'}\), con lo que la altura de la torre será \(\overline{AB}=4+x\). Según el enunciado tenemos que \(\beta=85^{\text{o}}\), \(\gamma=87^{\text{o}}\) y \(d=60\) metros.

Tenemos pues, aplicando la fórmula vista anteriormente en el triángulo \(ACD\), que:

\[\overline{AC}=\frac{d\cdot\text{sen}\,(180\text{\grad}-\gamma-\beta)}{\text{sen}\,\gamma}=\frac{60\cdot\text{sen}\,87^{\text{o}}}{\text{sen}\,8^{\text{o}}}\approxeq430,53\]

Por tanto:

\[x=\overline{AC}\cdot\text{sen}\,\alpha=\overline{AC}\cdot\text{sen}\,7^{\text{o}}\approxeq52,47\]

Es decir, la altura de la torre es, aproximadamente, \(\overline{AB}=4+x\approxeq56,47\) metros.

Leer más ...

Usos de la trigonometría. Cálculo de alturas y distancias (V)

Ver artículo en formato imprimible (pdf) aquí

Altura de un punto de pie inaccesible desde un terreno inclinado sin obstáculos

Deseamos calcular la altura \(\overline{AB}=x\) de un punto de pie inaccesible desde un terreno inclinado, tal y como se muestra en la figura.

trig7

Sea \(\gamma\) el ángulo de inclinación del terreno. Nos situamos en un punto \(C\) y calculamos el ángulo de elevación de \(A\), que lo llamaremos \(\alpha\). Sobre el plano que contiene el triángulo \(ABC\) medimos la distancia \(\overline{CE}=d\) y desde \(E\) volvemos a calcular el ángulo de elevación de \(A\), que llamaremos \(\beta\).

El método a seguir consiste en calcular \(overline{AC}\) en el triángulo \(ACE\) y a partir de aquí calcular \(x\) en el triángulo \(ABC\). Por un lado está claro que \(\widehat{ACE}=\alpha-\gamma\), y por otro que \(\widehat{CAE}=\beta-\alpha\). Esto último está menos claro. Veamos la demostración:

\[\widehat{CAE}=\widehat{CAB}-\widehat{DAB}=(90^{\text{o}}-\alpha)-(90^{\text{o}}-\beta)=\beta-\alpha\]

Obsérvese que con estos dos ángulos también se puede calcular el ángulo \(\widehat{CAE}\):

\[\widehat{CEA}=180^{\text{o}}-\widehat{ACE}-\widehat{CAE}=180^{\text{o}}-(\alpha-\gamma)-(\beta-\alpha)=180^{\text{o}}+\gamma-\beta\]

Ahora aplicamos el teorema de los senos en el triángulo \(ACE\):

\[\frac{\overline{AC}}{\text{sen}\,\widehat{CEA}}=\frac{d}{\text{sen}\,\widehat{CAE}}\Rightarrow\overline{AC}=\frac{d\cdot\text{sen}\,(180^{\text{o}}+\gamma-\beta)}{\text{sen}\,(\beta-\alpha)}\]

Finalmente, en el triángulo \(ABC\) se tiene:

\[\text{sen}\,\alpha=\frac{x}{\overline{AC}}\Rightarrow x=\overline{AC}\cdot\text{sen}\,\alpha\]

Ejemplo

El ángulo de elevación de una peña \(\overline{AB}\) mide \(47^{\text{o}}\). Después de caminar 1000 metros hacia ella, subiendo una pendiente inclinada \(32^{\text{o}}\) respecto de la horizontal, su ángulo de elevación es de \(77^{\text{o}}\). Hallar la altura de la peña con respecto al plano horizontal de la primera observación.

Solución

trig8

Llamemos \(x=\overline{AB}\) a la altura de la peña. En este caso tenemos que \(\alpha=47^{\text{o}}\), \(\beta=77^{\text{o}}\), \(\gamma=32^{\text{o}}\) y \(d=1000\). De los datos anteriores obtenemos los necesarios para aplicar la fórmula vista anteriormente: \(\widehat{CAE}=\beta-\alpha=77^{\text{o}}-47^{\text{o}}=30^{\text{o}}\), \(\widehat{CEA}=180^{\text{o}}+\gamma-\beta=180^{\text{o}}+32^{\text{o}}-77^{\text{o}}=135^{\text{o}}\).

\[\overline{AC}=\frac{d\cdot\text{sen}\,(180^{\text{o}}+\gamma-\beta)}{\text{sen}\,(\beta-\alpha)}=\frac{1000\cdot\text{sen}\,135^{\text{o}}}{\text{sen}\,30^{\text{o}}}\approxeq1414,21\]

Por tanto:

\[x=\overline{AC}\cdot\text{sen}\,\alpha=\overline{AC}\cdot\text{sen}\,47^{\text{o}}\approxeq1034,29\]

Es decir, la altura de la peña es de, aproximadamente, 1034,29 metros.

Leer más ...

Usos de la trigonometría. Cálculo de alturas y distancias (IV)

Ver artículo en formato imprimible (pdf) aquí

Altura de un punto de pie inaccesible desde un terreno horizontal sin obstáculos

Deseamos calcular la altura \(\overline{AB}=x\) de un punto de pie inaccesible, tal y como se muestra en la figura.

Altura de un punto de pie inaccesible desde un terreno horizontal sin obstáculos

Para ello elegimos un punto \(C\) y medimos el ángulo de elevación de \(A\), que lo llamaremos \(\alpha\). Avanzamos una distancia \(\overline{CD}=d\) y desde \(D\) volvemos a medir el ángulo de elevación de \(A\), que llamaremos \(\beta\).

El método a seguir consiste en calcular \(\overline{AC}\) en el triángulo \(ACD\) y luego calcular \(x\) en el triángulo \(ACB\) (o bien calcular \(\overline{AD}\) en el triángulo \(ACD\) y a continuación \(x\) en el triángulo \(ADB\)). Obsérvese en primer lugar que conocidos \(\alpha\) y \(\beta\) se puede calcular \(\gamma\):

\[\gamma=180^{\text{o}}-(\alpha+180^{\text{o}}-\beta)=\beta-\alpha\]

Ahora aplicamos el teorema de los senos en el triángulo \(ACD\):

\[\frac{\overline{AC}}{\text{sen}\,(180^{\text{o}}-\beta)}=\frac{d}{\text{sen}\,\gamma}\Rightarrow\overline{AC}=\frac{d\cdot\text{sen}\,(180^{\text{o}}-\beta)}{\text{sen},\gamma}\]

Finalmente, en el triángulo \(ACB\) se tiene:

\[\text{sen}\,\alpha=\frac{x}{\overline{AC}}\Rightarrow x=\overline{AC}\cdot\text{sen}\,\alpha\]

De una manera análoga podemos calcular la distancia \(\overline{CB}\) si nos interesa:

\[\cos\,\alpha=\frac{\overline{CB}}{\overline{AC}}\Rightarrow \overline{CB}=\overline{AC}\cdot\cos\,\alpha\]

Ejemplo

Desde un punto a ras de suelo se ve la azotea de un edificio con un ángulo de elevación de 48º. Avanzando 20 metros en dirección al edificio, el ángulo de elevación se incrementa en 14º. Calcular la altura del edificio.

Solución

Altura de un punto de pie inaccesible desde un terreno horizontal sin obstáculos

Llamemos \(x=\overline{AB}\) a la altura del edificio. En este caso tenemos que \(\alpha=48^{\text{o}}\), \(\beta=62^{\text{o}}\), \(d=20\) y \(\gamma=\beta-\alpha=62^{\text{o}}-48^{\text{o}}=14^{\text{o}}\) Entonces, según se ha explicado anteriormente:

\[\overline{AC}=\frac{d\cdot\text{sen}\,(180^{\text{o}}-\beta)}{\text{sen}\,\gamma}=\frac{20\cdot\text{sen}\,118^{\text{o}}}{\text{sen}14^{\text{o}}}\approxeq72,994\]

Por tanto:

\[x=\overline{AC}\cdot\text{sen}\,\alpha=\overline{AC}\cdot\text{sen}\,48^{\text{o}}\approxeq54,245\]

Es decir, la altura del edificio es de, aproximadamente, 54,245 metros.

Leer más ...

Usos de la trigonometría. Cálculo de alturas y distancias (III)

Ver artículo en formato imprimible (pdf) aquí

Altura de un punto de pie accesible

Para calcular la altura de un punto de pie accesible se pueden presentar dos casos distintos. El primero de ellos, que el suelo sea horizontal (figura 1) y el segundo, que el suelo presente una determinada inclinación (ver figura 2).

 Altura de un punto de pie accesible

Si el suelo es horizontal (figura 1) el triángulo \(ABC\) es rectángulo y entonces es muy fácil hallar la altura \(h\).

\[\text{tg}\,\alpha=\frac{h}{\overline{CB}}\Rightarrow h=\overline{CB}\cdot\text{tg}\,\alpha\]

Si el suelo presenta una inclinación dada, \(\beta\) (figura 2), conocemos también el ángulo \(\widehat{ACB}=\alpha-\beta\) y el ángulo \(\widehat{CAB}=90^{\text{o}}-\alpha\). Utilizando el teorema de los senos tenemos:

\[\frac{\overline{CB}}{\text{sen}\,\widehat{CAB}}=\frac{x}{\text{sen}\,\widehat{ACB}}\Rightarrow\frac{\overline{CB}}{\text{sen}\,(90^{\text{o}}-\alpha)}=\frac{x}{\text{sen}\,(\alpha-\beta)}\]

Y de aquí podremos despejar con facilidad la altura \(x\):

\[x=\frac{\overline{CB}\cdot\text{sen}\,(\alpha-\beta)}{\text{sen}\,(90^{\text{o}}-\alpha)}\]

Ejemplo

Un pasillo plano de 10 metros de largo y que forma un ángulo de \(25^{\text{o}}\) con la horizontal, conduce al pie de una gran torre. Calcular la altura de ésta, sabiendo que desde el inicio del pasillo el ángulo de elevación de su punto más alto es de \(82^{\text{o}}\).

Solución

Cálculo de la altura de una torre

Llamemos \(x=\overline{AB}\) a la altura de la torre. En este caso \(\overline{CB}=10\), \(\widehat{ACB}=\alpha-\beta=82^{\text{o}}-25^{\text{o}}=57^{\text{o}}\) y \(\widehat{CAB}=90^{\text{o}}-\alpha=90^{\text{o}}-82^{\text{o}}=8^{\text{o}}\). Por tanto:

\[x=\frac{\overline{CB}\cdot\text{sen}\,(\alpha-\beta)}{\text{sen}\,(90^{\text{o}}-\alpha)}=\frac{10\cdot\text{sen}\,57^{\text{o}}}{\text{sen}\,8^{\text{o}}}\Rightarrow x\approxeq60,26\]

Así pues, la altura de la torre es de, aproximadamente, 60,26 metros.

Leer más ...

Usos de la trigonometría. Cálculo de alturas y distancias (II)

Ver artículo en formato imprimible (pdf) aquí

Distancia entre un punto accesible y otro inaccesible

Supongamos que deseamos medir la distancia \(c\) desde \(A\) hasta \(B\), puntos entre los cuales media un obstáculo. A diferencia del caso anterior, no tenemos acceso al punto \(B\), tal y como se se muestra en la figura siguiente.

trig2

Pues bien, en este caso elegimos un punto \(C\) y medimos la distancia hasta \(A\), que llamaremos \(b\). También mediremos los ángulos \(\widehat{ACB}\), al que llamaremos \(\gamma\), y \(\widehat{BAC}\). al que llamaremos \(\alpha\). Medidos estos dos ángulos, sabremos la medida del ángulo \(\widehat{ABC}\), al que llamaremos \(\beta\), pues la suma de los tres ángulos de un triángulo es 180 grados: \(\beta=180^{\text{o}}-(\alpha+\gamma)\).

Haciendo uso del teorema de los senos tenemos que

\[\frac{c}{\text{sen}\,{\gamma}}=\frac{b}{\text{sen}\,{\beta}}=\frac{a}{\text{sen}\,{\alpha}}\]

y de la expresión anterior podemos despejar \(c\):

\[c=\frac{b}{\text{sen}\,{\beta}}\cdot\text{sen}\,{\gamma}\]

Ejemplo

Para calcular la anchura \(\overline{AB}\) de un río se elige un punto \(C\) que está en la misma orilla que \(A\) y se toman las siguientes medidas: \(\overline{AC}=67\) m, \(\widehat{BAC}=99^{\text{o}}\) \(\widehat{ACB}=20^{\text{o}}\). ¿Cuál es la distancia entre \(A\) y \(B\)?

Solución

En este caso \(b=67\), \(\gamma=20^{\text{o}}\) y \(\beta=180^{\text{o}}-(99^{\text{o}}+20^{\text{o}})=61^{\text{o}}\). Por tanto:

\[c=\frac{67}{\text{sen}\,61^{\text{o}}}\cdot\text{sen}\,20^{\text{o}}\Rightarrow c\approxeq26,2\,\text{m.}\]

O sea, la distancia entre \(A\) y \(B\) es de, aproximadamente, 26,2 metros.

Leer más ...
Suscribirse a este canal RSS

lasmatematicas.eu

Aplicaciones

Sígueme

webs de matemáticas