Menu
Cuadratura de un segmento de parábola

Cuadratura de un segmento de parábo…

Una forma de acercarse al...

Ejercicios de aplicaciones de las derivadas y del teorema del valor medio

Ejercicios de aplicaciones de las d…

Se proponen a continuaci&...

Aplicaciones de las derivadas. El teorema del valor medio

Aplicaciones de las derivadas. El t…

Ya hemos hablado en un pa...

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. R…

Cuando en las matem&aacut...

Series infinitas de números reales. Series convergentes

Series infinitas de números reales.…

Las sucesiones de n&uacut...

La paradoja de Zenón

La paradoja de Zenón

El filósofo griego...

Funciones continuas e inyectivas

Funciones continuas e inyectivas

Nuestro último teo...

El problema de la velocidad. Derivada de una función. Ejemplos de derivadas

El problema de la velocidad. Deriva…

Un problema relativo a ve...

Prev Next

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones

La proyección de un punto \(A\) sobre una recta \(r\) es el punto \(B\) donde la recta perpendicular a \(r\) que pasa por \(A\) corta a la recta \(r\). Con un dibujo se entiende muy bien.

producto escalar 01

La proyección de un segmento \(\overline {AB}\) sobre una recta \(r\) es otro segmento \(\overline {CD}\) contenido en la recta \(r\), cuyos extremos son, respectivamente, las proyecciones de los puntos \(A\) y \(B\) sobre la recta \(r\). Veámoslo con otro dibujo.

producto escalar 02

Un vector es un segmento orientado. Por tanto, la proyección de un vector \(\vec u\) sobre una recta se hace, tal y como hemos visto anteriormente, exactamente igual que la proyección de un segmento sobre una recta.

Se define la proyección de un vector \(\vec u\) sobre un vector \(\vec v\) como la proyección del vector \(\vec u\) sobre la recta que contiene al vector \(\vec v\). A la proyección de un vector \(\vec u\) sobre un vector \(\vec v\) la notaremos \({p_{\vec v}}\left( {\vec u} \right)\).

producto escalar 03

En la figura anterior se ha realizado la proyección de un vector \(\vec v\) sobre un vector \(\vec u\). Como se puede observar, la proyección es la misma si hacemos coincidir el origen de ambos vectores. Evidentemente, la proyección del vector \(\vec v\) sobre el vector \(\vec u\) no es la misma que la proyección del vector \(\vec u\) sobre el vector \(\vec v\): \({p_{\vec u}}\left( {\vec v} \right) \ne {p_{\vec v}}\left( {\vec u} \right)\) (ver figura siguiente).

producto escalar 04

Obsérvese también que todo par de vectores \(\vec u\) y \(\vec v\) forman entre sí un ángulo \(\alpha\). Recordando que a la longitud o módulo de un vector \(\vec u\) la denotamos por \(|\vec u|\), y haciendo uso de trigonometría básica (razones trigonométricas en un triángulo rectángulo), podemos escribir, si nos fijamos en las dos figuras anteriores, las dos siguientes relaciones:

\[\cos \alpha  = \frac{{{p_{\vec u}}\left( {\vec v} \right)}}{{\left| {\vec v} \right|}} \Rightarrow {p_{\vec u}}\left( {\vec v} \right) = \left| {\vec v} \right|\cos \alpha\quad;\quad\cos \alpha  = \frac{{{p_{\vec v}}\left( {\vec u} \right)}}{{\left| {\vec u} \right|}} \Rightarrow {p_{\vec v}}\left( {\vec u} \right) = \left| {\vec u} \right|\cos \alpha\qquad(1)\]

Producto escalar de vectores

El producto escalar de vectores está íntimamente relacionado con la proyección de un vector sobre otro. De hecho, se define el producto escalar de dos vectores como el producto del módulo de uno de ellos, por la proyección del otro sobre el primero. Es decir:

\[\vec u \cdot \vec v = \left| {\vec u} \right|{p_{\vec u}}\left( {\vec v} \right)\quad;\quad\vec u \cdot \vec v = \left| {\vec v} \right|{p_{\vec v}}\left( {\vec u} \right)\qquad(2)\]

Obsérvese que si el vector sobre el que hacemos la proyección tiene longitud o módulo igual a uno, entonces el producto escalar es justamente la proyección. De este modo:

\[\left| {\vec u} \right| = 1 \Rightarrow \vec u \cdot \vec v = {p_{\vec u}}\left( {\vec v} \right)\quad;\quad\left| {\vec v} \right| = 1 \Rightarrow \vec u \cdot \vec v = {p_{\vec v}}\left( {\vec u} \right)\]

Es más habitual definir el producto escalar de dos vectores de la siguiente manera:

\[\vec u \cdot \vec v = \left| {\vec u} \right|\left| {\vec v} \right|\cos \alpha\qquad(3)\]

donde lo único que se ha hecho es sustituir en \((2)\) las relaciones dadas en \((1)\).

Propiedades del producto escalar de vectores

El producto escalar de dos vectores es un número real (por eso recibe el nombre de escalar). Además, el producto escalar de dos vectores es, a la vista de la fórmula (3), claramente conmutativo. Esto nos lleva, por (2), a que la razón entre los módulos de dos vectores es igual a la razón entre sus proyecciones:

\[\left| {\vec u} \right|{p_{\vec u}}\left( {\vec v} \right) = \left| {\vec v} \right|{p_{\vec v}}\left( {\vec u} \right) \Leftrightarrow \frac{{\left| {\vec u} \right|}}{{\left| {\vec v} \right|}} = \frac{{{p_{\vec v}}\left( {\vec u} \right)}}{{{p_{\vec u}}\left( {\vec v} \right)}}\]

De aquí se deduce que módulos iguales y proyecciones iguales son cosas equivalentes (como es natural):

\[\left| {\vec u} \right| = \left| {\vec v} \right| \Leftrightarrow \frac{{\left| {\vec u} \right|}}{{\left| {\vec v} \right|}} = 1 \Leftrightarrow 1 = \frac{{{p_{\vec v}}\left( {\vec u} \right)}}{{{p_{\vec u}}\left( {\vec v} \right)}} \Leftrightarrow {p_{\vec u}}\left( {\vec v} \right) = {p_{\vec v}}\left( {\vec u} \right)\]

El producto escalar de un vector por sí mismo es igual a su módulo al cuadrado, pues el ángulo de un vector consigo mismo es cero. O bien porque la proyección de un vector sobre sí mismo es igual a la longitud o módulo de ese vector.

\[\vec u \cdot \vec u = \left| {\vec u} \right|\left| {\vec u} \right|\cos 0 = {\left| {\vec u} \right|^2}\quad;\quad\vec u \cdot \vec u = \left| {\vec u} \right|{p_{\vec u}}\left( {\vec u} \right) = \left| {\vec u} \right|\left| {\vec u} \right| = {\left| {\vec u} \right|^2}\qquad(4)\]

El producto escalar de dos vectores perpendiculares es igual a cero, ya que el coseno de un ángulo recto es cero. O bien porque la proyección de uno sobre el otro es un punto, que tiene longitud cero.

\[\vec u \bot \vec v \Rightarrow \vec u \cdot \vec v = \left| {\vec u} \right|\left| {\vec v} \right|\cos 90 = 0\quad;\quad\vec u \bot \vec v \Rightarrow \vec u \cdot \vec v = \left| {\vec u} \right|{p_{\vec u}}\left( {\vec v} \right) = \left| {\vec u} \right| \cdot 0 = 0\]

Recíprocamente, si el producto escalar de dos vectores no nulos es cero, entonces los vectores son perpendiculares.

\[\vec u,\vec v \ne 0\,\,,\,\,\vec u \cdot \vec v = 0 \Rightarrow \left| {\vec u} \right|\left| {\vec v} \right|\cos \alpha  = 0 \Rightarrow \cos \alpha  = 0 \Rightarrow \alpha  = 90 \Rightarrow \vec u \bot \vec v\]

Observa ahora la siguiente figura.

producto escalar 05

De ella se deduce que la proyección de la suma de dos vectores sobre otro es igual a la suma de las proyecciones de los dos vectores por separado. Entonces, usando la fórmula (2):

\[\vec u \cdot \left( {\vec v + \vec w} \right) = \left| {\vec u} \right|{p_{\vec u}}\left( {\vec v + \vec w} \right) = \left| {\vec u} \right|\left( {{p_{\vec u}}\left( {\vec v} \right) + {p_{\vec u}}\left( {\vec w} \right)} \right) = \left| {\vec u} \right|{p_{\vec u}}\left( {\vec v} \right) + \left| {\vec u} \right|{p_{\vec u}}\left( {\vec w} \right) = \vec u \cdot \vec v + \vec u \cdot \vec w\]

Lo que demuestra que el producto escalar cumple la propiedad distributiva respecto de la suma de vectores.

Una última propiedad del producto escalar es la llamada asociativa mixta, que relaciona el producto de números reales con el producto escalar:

\[k\left( {\vec u \cdot \vec v} \right) = k\left( {\left| {\vec u} \right|{p_{\vec v}}\left( {\vec u} \right)} \right) = \left( {k\left| {\vec u} \right|} \right){p_{\vec v}}\left( {\vec u} \right) = \left| {k\vec u} \right|{p_{\vec v}}\left( {\vec u} \right) = \left( {k\vec u} \right) \cdot \vec v\]

Fijemos ahora en el espacio vectorial \(\mathbb{R}^3\) un sistema de referencia ortonormal \(\left\{ {O\,;\,\left\{ {{\rm{i}}\,{\rm{,}}\,{\rm{j}}\,{\rm{,}}\,{\rm{k}}} \right\}} \right\}\), es decir, un origen de coordenadas en \(O\left( {0,0,0} \right)\), y una base de vectores \(\left\{ {{\rm{i}}\,{\rm{,}}\,{\rm{j}}\,{\rm{,}}\,{\rm{k}}} \right\}\) de módulo uno y perpendiculares dos a dos. Observemos que el producto escalar de dos vectores distintos de la base es cero, y que el producto escalar de un vector de la base consigo mismo es igual a uno.

\[{\rm{i}} \cdot {\rm{j}} = {\rm{i}} \cdot {\rm{k}} = {\rm{j}} \cdot {\rm{k}} = 0\ ;\ {\rm{i}} \cdot {\rm{i}} = {\left| {\rm{i}} \right|^2} = 1\ ;\ {\rm{j}} \cdot {\rm{j}} = {\left| {\rm{j}} \right|^2} = 1\ ;\ {\rm{k}} \cdot {\rm{k}} = {\left| {\rm{k}} \right|^2} = 1\]

Entonces, dados dos vectores \(\vec u\) y \(\vec v\), los podemos escribir como combinación lineal de los vectores de la base, es decir, existen \({u_1},{u_2},{u_3} \in \mathbb{R}\), \({v_1},{v_2},{v_3} \in \mathbb{R}\) tales que

\[\vec u = {u_1}{\rm{i}} + {u_2}{\rm{j}} + {u_3}{\rm{k}}\ ,\ \vec v = {v_1}{\rm{i}} + {v_2}{\rm{j}} + {v_3}{\rm{k}}\]

O lo que es lo mismo, un sistema de referencia nos permite escribir los vectores \(\vec u\) y \(\vec v\) en coordenadas respecto de la base:

\[\vec u = \left( {{u_1},{u_2},{u_3}} \right)\ ,\ \vec v = \left( {{v_1},{v_2},{v_3}} \right)\]

Vamos a hacer uso de la propiedad distributiva y de la asociativa mixta para obtener la expresión del producto escalar en función de las coordenadas de los vectores.

\[\vec u \cdot \vec v = \left( {{u_1}{\rm{i}} + {u_2}{\rm{j}} + {u_3}{\rm{k}}} \right) \cdot \left( {{v_1}{\rm{i}} + {v_2}{\rm{j}} + {v_3}{\rm{k}}} \right) =\]

\[= \left( {{u_1}{\rm{i}}} \right) \cdot \left( {{v_1}{\rm{i}}} \right) + \left( {{u_1}{\rm{i}}} \right) \cdot \left( {{v_2}{\rm{j}}} \right) + \left( {{u_1}{\rm{i}}} \right) \cdot \left( {{v_3}{\rm{k}}} \right) + \]

\[+ \left( {{u_2}{\rm{j}}} \right) \cdot \left( {{v_1}{\rm{i}}} \right) + \left( {{u_2}{\rm{j}}} \right) \cdot \left( {{v_2}{\rm{j}}} \right) + \left( {{u_2}{\rm{j}}} \right) \cdot \left( {{v_3}{\rm{k}}} \right) +\]

\[+ \left( {{u_3}{\rm{k}}} \right) \cdot \left( {{v_1}{\rm{i}}} \right) + \left( {{u_3}{\rm{k}}} \right) \cdot \left( {{v_2}{\rm{j}}} \right) + \left( {{u_3}{\rm{k}}} \right) \cdot \left( {{v_3}{\rm{k}}} \right) = \]

\[= \left( {{u_1}{v_1}} \right)\left( {{\rm{i}} \cdot {\rm{i}}} \right) + \left( {{u_1}{v_2}} \right)\left( {{\rm{i}} \cdot {\rm{j}}} \right) + \left( {{u_1}{v_3}} \right)\left( {{\rm{i}} \cdot {\rm{k}}} \right) + \]

\[+ \left( {{u_2}{v_1}} \right)\left( {{\rm{j}} \cdot {\rm{i}}} \right) + \left( {{u_2}{v_2}} \right)\left( {{\rm{j}} \cdot {\rm{j}}} \right) + \left( {{u_2}{v_3}} \right)\left( {{\rm{j}} \cdot {\rm{k}}} \right) + \]

\[+ \left( {{u_3}{v_1}} \right)\left( {{\rm{k}} \cdot {\rm{i}}} \right) + \left( {{u_3}{v_2}} \right)\left( {{\rm{k}} \cdot {\rm{j}}} \right) + \left( {{u_3}{v_3}} \right)\left( {{\rm{k}} \cdot {\rm{k}}} \right)\]

Seis de los nueve términos anteriores son cero pues los vectores de la base del sistema de referencia son perpendiculares. Además, el producto escalar de un elemento de la base consigo mismo es igual a uno. Por tanto:

\[\vec u \cdot \vec v = {u_1}{v_1} + {u_2}{v_2} + {u_3}{v_3}\qquad (5)\]

Ahora también podemos escribir el módulo de un vector dependiendo de sus coordenadas:

\[{\left| {\vec u} \right|^2} = \vec u \cdot \vec u \Rightarrow \left| {\vec u} \right| =  + \sqrt {\vec u \cdot \vec u}  \Rightarrow \left| {\vec u} \right| =  + \sqrt {u_1^2 + u_2^2 + u_3^2}\]

Algunas aplicaciones del producto escalar de vectores

Ángulo de dos rectas

De la definición de producto escalar de dos vectores podemos deducir el ángulo que forman ambos.

\[\vec u \cdot \vec v = \left| {\vec u} \right|\,\,\left| {\vec v} \right|\cos \alpha  \Rightarrow \cos \alpha  = \frac{{\vec u \cdot \vec v}}{{\left| {\vec u} \right|\,\,\left| {\vec v} \right|}} \Rightarrow \cos \alpha  = \frac{{{u_1}{v_1} + {u_2}{v_2} + {u_3}{v_3}}}{{\sqrt {u_1^2 + u_2^2 + u_3^2} \sqrt {v_1^2 + v_2^2 + v_3^2} }}\]

Si se trata de dos rectas, el ángulo formado entre ellas será el mismo que el que formen sus vectores directores.

Es posible que al hacer los cálculos el valor de   salga positivo o bien su valor sea negativo. En el primer caso el ángulo obtenido es agudo, y en el segundo es obtuso. Por convenio tomaremos como ángulo entre dos vectores o entre dos rectas el ángulo agudo. Para ello reescribiremos nuestra fórmula así:

\[\cos \alpha  = \frac{{\left| {{u_1}{v_1} + {u_2}{v_2} + {u_3}{v_3}} \right|}}{{\sqrt {u_1^2 + u_2^2 + u_3^2} \sqrt {v_1^2 + v_2^2 + v_3^2} }}\]

Al tomar el valor absoluto en el numerador, el valor de \(\cos\alpha\) siempre será positivo y, por tanto, \(\alpha\) será un ángulo agudo.

Observemos también que dos vectores serán perpendiculares (o dos rectas serán perpendiculares) cuando \(\cos\alpha=0\), es decir, cuando \({u_1}{v_1} + {u_2}{v_2} + {u_3}{v_3} = 0\). Simbólicamente:

\[r \bot s \Leftrightarrow \vec u \bot \vec v \Leftrightarrow \vec u \cdot \vec v = 0 \Leftrightarrow {u_1}{v_1} + {u_2}{v_2} + {u_3}{v_3} = 0\]

Vector perpendicular a un plano

Un vector \(\vec u\) es perpendicular a un plano \(\pi\) cuando \(\vec u\) es perpendicular a cualquier vector contenido en \(\pi\).

producto escalar 06

Dado el plano \(\pi\) de ecuación \(Ax + By + Cz + D = 0\) se tiene que \(\vec u = \left( {A,B,C} \right)\) son las coordenadas del un vector perpendicular al plano. Es decir: \(\vec u = \left( {A,B,C} \right) \bot \pi\).

Para demostrar que lo anterior es cierto se toman dos puntos cualesquiera \(M\left( {{m_1},{m_2},{m_3}} \right)\) y \(P\left( {{p_1},{p_2},{p_3}} \right)\) del plano \(\pi\), y efectuamos el producto escalar del vector \(\vec u = \left( {A,B,C} \right)\) con el vector \(\overrightarrow {MP}\). Si el resultado es cero, entonces \(\vec u \bot \overrightarrow {MP}\), con lo que \(\vec u \bot \pi\).

\[\vec u \cdot \overrightarrow {MP}  = \left( {A,B,C} \right) \cdot \left( {{p_1} - {m_1},{p_2} - {m_2},{p_3} - {m_3}} \right) = A\left( {{p_1} - {m_1}} \right) + B\left( {{p_2} - {m_2}} \right) + C\left( {{p_3} - {m_3}} \right) =\]

\[= \left( {A{p_1} + B{p_2} + C{p_3}} \right) - \left( {A{m_1} + B{m_2} + C{m_3}} \right) =  - D - \left( { - D} \right) = 0\]

La última igualdad es cierta porque tanto \(M\left( {{m_1},{m_2},{m_3}} \right)\) como \(P\left( {{p_1},{p_2},{p_3}} \right)\) son puntos del plano \(\pi\).

Ángulo de dos planos

Dados dos planos \(\pi\) y \(\pi'\), el ángulo formado por ambos es el que forman dos vectores contenidos en cada uno de los planos respectivos que sean perpendiculares a la recta intersección de los dos planos, es decir, el ángulo de los dos planos es el formado por los vectores \(\vec v\) y \(\vec v'\) de la figura.

Si \(\vec u\) y \(\vec u'\) son dos vectores perpendiculares a cada uno de los planos respectivos, podemos observar que el ángulo que forman  \(\vec u\) y \(\vec u'\) es el mismo que el de \(\vec v\) y \(\vec v'\).

producto escalar 07

Por lo tanto, si las ecuaciones de ambos planos son \(\pi  \equiv Ax + By + Cz + D = 0\) y \(\pi ' \equiv A'x + B'y + C'z + D' = 0\), entonces los vectores \(\vec u = \left( {A,B,C} \right)\) y \(\vec u' = \left( {A',B',C'} \right)\) son perpendiculares a los planos respectivos, luego:

\[\cos \alpha  = \frac{{\left| {AA' + BB' + CC'} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} \sqrt {A'{\,^2} + B'{\,^2} + C'{\,^2}} }}\]

Hemos tomado valor absoluto para obtener el ángulo agudo.

En particular dos planos serán perpendiculares cuando \(\cos\alpha=0\), es decir, cuando \(AA' + BB' + CC' = 0\):

\[\pi  \bot \pi ' \Leftrightarrow \vec u \bot \vec u' \Leftrightarrow \vec u \cdot \vec u' = 0 \Leftrightarrow AA' + BB' + CC' = 0\]

Ángulo entre recta y plano

Dada una recta \(r\) y un plano \(\pi\), el ángulo formado por ambos es aquel que forman \(r\) y \(r'\), donde \(r'\) es la proyección ortogonal de \(r\) sobre \(\pi\). La recta \(r'\) se obtiene como intersección de \(\pi\) con el plano que contiene a la recta \(r\) y es perpendicular a \(\pi\).

producto escalar 08

Si \(\vec v\) y \(\vec v'\) son dos vectores de \(r\) y \(r'\), el ángulo formado por \(r\) y \(\pi\) es el que forman \(\vec v\) y \(\vec v'\). Si \(\vec u\) es un vector perpendicular a \(\pi\), ese ángulo es complementario del formado por \(\vec u\) y \(\vec v\). Por lo tanto, si las ecuaciones de la recta son \(r \equiv \frac{{x - {a_1}}}{{{v_1}}} = \frac{{y - {a_2}}}{{{v_2}}} = \frac{{z - {a_3}}}{{{v_3}}}\), y la ecuación general o implícita del plano es \(\pi  \equiv Ax + By + Cz + D = 0\), tenemos que \(\text{sen}\,\alpha  = \cos \left( {\frac{\pi }{2} - \alpha } \right)\), luego

\[\text{sen}\,\alpha  = \frac{{\left| {A{v_1} + B{v_2} + C{v_3}} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} \sqrt {{v_1}^2 + {v_2}^2 + {v_3}^2} }}\]

Distancia de un punto a un plano, distancia entre dos planos paralelos y distancia entre una recta y un plano paralelos

Dados un punto \(P\) y un plano \(\pi\), se llama distancia de \(P\) a \(\pi\), \(d(P,\pi)\), a la distancia de \(P\) a \(M\), donde \(M\) es el punto de intersección de \(\pi\) con la recta que pasa por \(P\) y es perpendicular a \(\pi\).

producto escalar 09

Supongamos que el punto \(P\) tiene coordenadas \(P\left( {{p_1},\,\,{p_2},\,\,{p_3}} \right)\) y que el plano \(\pi\) tiene ecuación implícita \(\pi  \equiv Ax + By + Cz + D = 0\). Entonces la distancia de \(P\) a \(\pi\) viene dada por:

\[d\left( {P,\pi } \right) = \frac{{\left| {A{p_1} + B{p_2} + C{p_3} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\]

Para demostrarlo supongamos que \(M\left( {{m_1},\,\,{m_2},\,\,{m_3}} \right)\), \(\overrightarrow {MP}  = \left( {{p_1} - {m_1},\,\,{p_2} - {m_2},\,\,{p_3} - {m_3}} \right)\) y que \(\vec u = \left( {A,B,C} \right)\) es el vector perpendicular al plano. Obviamente \(d\left( {P,\,\,\pi } \right) = \left| {\overrightarrow {MP} } \right|\).

Pero, por un lado

\[\vec u \cdot \overrightarrow {MP}  = A\left( {{p_1} - {m_1}} \right) + B\left( {{p_2} - {m_2}} \right) + C\left( {{p_3} - {m_3}} \right)\]

y, por otro,

\[\vec u \cdot \overrightarrow {MP}  = \left| {\vec u} \right|\left| {\overrightarrow {MP} } \right|\cos \alpha  = \sqrt {{A^2} + {B^2} + {C^2}} \left| {\overrightarrow {MP} } \right|\left( { \pm 1} \right)\]

(el ángulo \(\alpha\) que forman \(\vec u\) y \(\overrightarrow {MP}\) es \(0\) o \(180\)).

Entonces, igualando ambas expresiones:

\[\pm \sqrt {{A^2} + {B^2} + {C^2}} \left| {\overrightarrow {MP} } \right| = A\left( {{p_1} - {m_1}} \right) + B\left( {{p_2} - {m_2}} \right) + C\left( {{p_3} - {m_3}} \right) \Rightarrow\]

\[\Rightarrow \left| {\overrightarrow {MP} } \right| =  \pm \frac{{A\left( {{p_1} - {m_1}} \right) + B\left( {{p_2} - {m_2}} \right) + C\left( {{p_3} - {m_3}} \right)}}{{\sqrt {{A^2} + {B^2} + {C^2}} }} =  \pm \frac{{A{p_1} + B{p_2} + C{p_3} - \left( {A{m_1} + B{m_2} + C{m_3}} \right)}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\]

Pero \(M \in \pi\), por lo que

\[A{m_1} + B{m_2} + C{m_3} + D = 0 \Rightarrow A{m_1} + B{m_2} + C{m_3} =  - D \Rightarrow \left| {\overrightarrow {MP} } \right| =  \pm \frac{{A{p_1} + B{p_2} + C{p_3} + D}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\]

y como la distancia es siempre un número no negativo, entonces

\[\left| {\overrightarrow {MP} } \right| = d(P,\pi ) = \frac{{\left| {A{p_1} + B{p_2} + C{p_3} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\]

Si dos planos son paralelos la distancia entre ambos será la distancia de un punto cualquiera de uno de ellos al otro. Del mismo modo, si una recta un plano son paralelos, la distancia de la recta al plano será la distancia de un punto cualquiera de la recta al plano.


Puedes descargar el artículo completo en pdf haciendo clic aquí.


Leer más ...
Suscribirse a este canal RSS

lasmatematicas.eu

Aplicaciones

Sígueme

webs de matemáticas