Menu
Cuadratura de un segmento de parábola

Cuadratura de un segmento de parábo…

Una forma de acercarse al...

Ejercicios de aplicaciones de las derivadas y del teorema del valor medio

Ejercicios de aplicaciones de las d…

Se proponen a continuaci&...

Aplicaciones de las derivadas. El teorema del valor medio

Aplicaciones de las derivadas. El t…

Ya hemos hablado en un pa...

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. R…

Cuando en las matem&aacut...

Series infinitas de números reales. Series convergentes

Series infinitas de números reales.…

Las sucesiones de n&uacut...

La paradoja de Zenón

La paradoja de Zenón

El filósofo griego...

Funciones continuas e inyectivas

Funciones continuas e inyectivas

Nuestro último teo...

El problema de la velocidad. Derivada de una función. Ejemplos de derivadas

El problema de la velocidad. Deriva…

Un problema relativo a ve...

Prev Next

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones

La proyección de un punto \(A\) sobre una recta \(r\) es el punto \(B\) donde la recta perpendicular a \(r\) que pasa por \(A\) corta a la recta \(r\). Con un dibujo se entiende muy bien.

producto escalar 01

La proyección de un segmento \(\overline {AB}\) sobre una recta \(r\) es otro segmento \(\overline {CD}\) contenido en la recta \(r\), cuyos extremos son, respectivamente, las proyecciones de los puntos \(A\) y \(B\) sobre la recta \(r\). Veámoslo con otro dibujo.

producto escalar 02

Un vector es un segmento orientado. Por tanto, la proyección de un vector \(\vec u\) sobre una recta se hace, tal y como hemos visto anteriormente, exactamente igual que la proyección de un segmento sobre una recta.

Se define la proyección de un vector \(\vec u\) sobre un vector \(\vec v\) como la proyección del vector \(\vec u\) sobre la recta que contiene al vector \(\vec v\). A la proyección de un vector \(\vec u\) sobre un vector \(\vec v\) la notaremos \({p_{\vec v}}\left( {\vec u} \right)\).

producto escalar 03

En la figura anterior se ha realizado la proyección de un vector \(\vec v\) sobre un vector \(\vec u\). Como se puede observar, la proyección es la misma si hacemos coincidir el origen de ambos vectores. Evidentemente, la proyección del vector \(\vec v\) sobre el vector \(\vec u\) no es la misma que la proyección del vector \(\vec u\) sobre el vector \(\vec v\): \({p_{\vec u}}\left( {\vec v} \right) \ne {p_{\vec v}}\left( {\vec u} \right)\) (ver figura siguiente).

producto escalar 04

Obsérvese también que todo par de vectores \(\vec u\) y \(\vec v\) forman entre sí un ángulo \(\alpha\). Recordando que a la longitud o módulo de un vector \(\vec u\) la denotamos por \(|\vec u|\), y haciendo uso de trigonometría básica (razones trigonométricas en un triángulo rectángulo), podemos escribir, si nos fijamos en las dos figuras anteriores, las dos siguientes relaciones:

\[\cos \alpha  = \frac{{{p_{\vec u}}\left( {\vec v} \right)}}{{\left| {\vec v} \right|}} \Rightarrow {p_{\vec u}}\left( {\vec v} \right) = \left| {\vec v} \right|\cos \alpha\quad;\quad\cos \alpha  = \frac{{{p_{\vec v}}\left( {\vec u} \right)}}{{\left| {\vec u} \right|}} \Rightarrow {p_{\vec v}}\left( {\vec u} \right) = \left| {\vec u} \right|\cos \alpha\qquad(1)\]

Producto escalar de vectores

El producto escalar de vectores está íntimamente relacionado con la proyección de un vector sobre otro. De hecho, se define el producto escalar de dos vectores como el producto del módulo de uno de ellos, por la proyección del otro sobre el primero. Es decir:

\[\vec u \cdot \vec v = \left| {\vec u} \right|{p_{\vec u}}\left( {\vec v} \right)\quad;\quad\vec u \cdot \vec v = \left| {\vec v} \right|{p_{\vec v}}\left( {\vec u} \right)\qquad(2)\]

Obsérvese que si el vector sobre el que hacemos la proyección tiene longitud o módulo igual a uno, entonces el producto escalar es justamente la proyección. De este modo:

\[\left| {\vec u} \right| = 1 \Rightarrow \vec u \cdot \vec v = {p_{\vec u}}\left( {\vec v} \right)\quad;\quad\left| {\vec v} \right| = 1 \Rightarrow \vec u \cdot \vec v = {p_{\vec v}}\left( {\vec u} \right)\]

Es más habitual definir el producto escalar de dos vectores de la siguiente manera:

\[\vec u \cdot \vec v = \left| {\vec u} \right|\left| {\vec v} \right|\cos \alpha\qquad(3)\]

donde lo único que se ha hecho es sustituir en \((2)\) las relaciones dadas en \((1)\).

Propiedades del producto escalar de vectores

El producto escalar de dos vectores es un número real (por eso recibe el nombre de escalar). Además, el producto escalar de dos vectores es, a la vista de la fórmula (3), claramente conmutativo. Esto nos lleva, por (2), a que la razón entre los módulos de dos vectores es igual a la razón entre sus proyecciones:

\[\left| {\vec u} \right|{p_{\vec u}}\left( {\vec v} \right) = \left| {\vec v} \right|{p_{\vec v}}\left( {\vec u} \right) \Leftrightarrow \frac{{\left| {\vec u} \right|}}{{\left| {\vec v} \right|}} = \frac{{{p_{\vec v}}\left( {\vec u} \right)}}{{{p_{\vec u}}\left( {\vec v} \right)}}\]

De aquí se deduce que módulos iguales y proyecciones iguales son cosas equivalentes (como es natural):

\[\left| {\vec u} \right| = \left| {\vec v} \right| \Leftrightarrow \frac{{\left| {\vec u} \right|}}{{\left| {\vec v} \right|}} = 1 \Leftrightarrow 1 = \frac{{{p_{\vec v}}\left( {\vec u} \right)}}{{{p_{\vec u}}\left( {\vec v} \right)}} \Leftrightarrow {p_{\vec u}}\left( {\vec v} \right) = {p_{\vec v}}\left( {\vec u} \right)\]

El producto escalar de un vector por sí mismo es igual a su módulo al cuadrado, pues el ángulo de un vector consigo mismo es cero. O bien porque la proyección de un vector sobre sí mismo es igual a la longitud o módulo de ese vector.

\[\vec u \cdot \vec u = \left| {\vec u} \right|\left| {\vec u} \right|\cos 0 = {\left| {\vec u} \right|^2}\quad;\quad\vec u \cdot \vec u = \left| {\vec u} \right|{p_{\vec u}}\left( {\vec u} \right) = \left| {\vec u} \right|\left| {\vec u} \right| = {\left| {\vec u} \right|^2}\qquad(4)\]

El producto escalar de dos vectores perpendiculares es igual a cero, ya que el coseno de un ángulo recto es cero. O bien porque la proyección de uno sobre el otro es un punto, que tiene longitud cero.

\[\vec u \bot \vec v \Rightarrow \vec u \cdot \vec v = \left| {\vec u} \right|\left| {\vec v} \right|\cos 90 = 0\quad;\quad\vec u \bot \vec v \Rightarrow \vec u \cdot \vec v = \left| {\vec u} \right|{p_{\vec u}}\left( {\vec v} \right) = \left| {\vec u} \right| \cdot 0 = 0\]

Recíprocamente, si el producto escalar de dos vectores no nulos es cero, entonces los vectores son perpendiculares.

\[\vec u,\vec v \ne 0\,\,,\,\,\vec u \cdot \vec v = 0 \Rightarrow \left| {\vec u} \right|\left| {\vec v} \right|\cos \alpha  = 0 \Rightarrow \cos \alpha  = 0 \Rightarrow \alpha  = 90 \Rightarrow \vec u \bot \vec v\]

Observa ahora la siguiente figura.

producto escalar 05

De ella se deduce que la proyección de la suma de dos vectores sobre otro es igual a la suma de las proyecciones de los dos vectores por separado. Entonces, usando la fórmula (2):

\[\vec u \cdot \left( {\vec v + \vec w} \right) = \left| {\vec u} \right|{p_{\vec u}}\left( {\vec v + \vec w} \right) = \left| {\vec u} \right|\left( {{p_{\vec u}}\left( {\vec v} \right) + {p_{\vec u}}\left( {\vec w} \right)} \right) = \left| {\vec u} \right|{p_{\vec u}}\left( {\vec v} \right) + \left| {\vec u} \right|{p_{\vec u}}\left( {\vec w} \right) = \vec u \cdot \vec v + \vec u \cdot \vec w\]

Lo que demuestra que el producto escalar cumple la propiedad distributiva respecto de la suma de vectores.

Una última propiedad del producto escalar es la llamada asociativa mixta, que relaciona el producto de números reales con el producto escalar:

\[k\left( {\vec u \cdot \vec v} \right) = k\left( {\left| {\vec u} \right|{p_{\vec v}}\left( {\vec u} \right)} \right) = \left( {k\left| {\vec u} \right|} \right){p_{\vec v}}\left( {\vec u} \right) = \left| {k\vec u} \right|{p_{\vec v}}\left( {\vec u} \right) = \left( {k\vec u} \right) \cdot \vec v\]

Fijemos ahora en el espacio vectorial \(\mathbb{R}^3\) un sistema de referencia ortonormal \(\left\{ {O\,;\,\left\{ {{\rm{i}}\,{\rm{,}}\,{\rm{j}}\,{\rm{,}}\,{\rm{k}}} \right\}} \right\}\), es decir, un origen de coordenadas en \(O\left( {0,0,0} \right)\), y una base de vectores \(\left\{ {{\rm{i}}\,{\rm{,}}\,{\rm{j}}\,{\rm{,}}\,{\rm{k}}} \right\}\) de módulo uno y perpendiculares dos a dos. Observemos que el producto escalar de dos vectores distintos de la base es cero, y que el producto escalar de un vector de la base consigo mismo es igual a uno.

\[{\rm{i}} \cdot {\rm{j}} = {\rm{i}} \cdot {\rm{k}} = {\rm{j}} \cdot {\rm{k}} = 0\ ;\ {\rm{i}} \cdot {\rm{i}} = {\left| {\rm{i}} \right|^2} = 1\ ;\ {\rm{j}} \cdot {\rm{j}} = {\left| {\rm{j}} \right|^2} = 1\ ;\ {\rm{k}} \cdot {\rm{k}} = {\left| {\rm{k}} \right|^2} = 1\]

Entonces, dados dos vectores \(\vec u\) y \(\vec v\), los podemos escribir como combinación lineal de los vectores de la base, es decir, existen \({u_1},{u_2},{u_3} \in \mathbb{R}\), \({v_1},{v_2},{v_3} \in \mathbb{R}\) tales que

\[\vec u = {u_1}{\rm{i}} + {u_2}{\rm{j}} + {u_3}{\rm{k}}\ ,\ \vec v = {v_1}{\rm{i}} + {v_2}{\rm{j}} + {v_3}{\rm{k}}\]

O lo que es lo mismo, un sistema de referencia nos permite escribir los vectores \(\vec u\) y \(\vec v\) en coordenadas respecto de la base:

\[\vec u = \left( {{u_1},{u_2},{u_3}} \right)\ ,\ \vec v = \left( {{v_1},{v_2},{v_3}} \right)\]

Vamos a hacer uso de la propiedad distributiva y de la asociativa mixta para obtener la expresión del producto escalar en función de las coordenadas de los vectores.

\[\vec u \cdot \vec v = \left( {{u_1}{\rm{i}} + {u_2}{\rm{j}} + {u_3}{\rm{k}}} \right) \cdot \left( {{v_1}{\rm{i}} + {v_2}{\rm{j}} + {v_3}{\rm{k}}} \right) =\]

\[= \left( {{u_1}{\rm{i}}} \right) \cdot \left( {{v_1}{\rm{i}}} \right) + \left( {{u_1}{\rm{i}}} \right) \cdot \left( {{v_2}{\rm{j}}} \right) + \left( {{u_1}{\rm{i}}} \right) \cdot \left( {{v_3}{\rm{k}}} \right) + \]

\[+ \left( {{u_2}{\rm{j}}} \right) \cdot \left( {{v_1}{\rm{i}}} \right) + \left( {{u_2}{\rm{j}}} \right) \cdot \left( {{v_2}{\rm{j}}} \right) + \left( {{u_2}{\rm{j}}} \right) \cdot \left( {{v_3}{\rm{k}}} \right) +\]

\[+ \left( {{u_3}{\rm{k}}} \right) \cdot \left( {{v_1}{\rm{i}}} \right) + \left( {{u_3}{\rm{k}}} \right) \cdot \left( {{v_2}{\rm{j}}} \right) + \left( {{u_3}{\rm{k}}} \right) \cdot \left( {{v_3}{\rm{k}}} \right) = \]

\[= \left( {{u_1}{v_1}} \right)\left( {{\rm{i}} \cdot {\rm{i}}} \right) + \left( {{u_1}{v_2}} \right)\left( {{\rm{i}} \cdot {\rm{j}}} \right) + \left( {{u_1}{v_3}} \right)\left( {{\rm{i}} \cdot {\rm{k}}} \right) + \]

\[+ \left( {{u_2}{v_1}} \right)\left( {{\rm{j}} \cdot {\rm{i}}} \right) + \left( {{u_2}{v_2}} \right)\left( {{\rm{j}} \cdot {\rm{j}}} \right) + \left( {{u_2}{v_3}} \right)\left( {{\rm{j}} \cdot {\rm{k}}} \right) + \]

\[+ \left( {{u_3}{v_1}} \right)\left( {{\rm{k}} \cdot {\rm{i}}} \right) + \left( {{u_3}{v_2}} \right)\left( {{\rm{k}} \cdot {\rm{j}}} \right) + \left( {{u_3}{v_3}} \right)\left( {{\rm{k}} \cdot {\rm{k}}} \right)\]

Seis de los nueve términos anteriores son cero pues los vectores de la base del sistema de referencia son perpendiculares. Además, el producto escalar de un elemento de la base consigo mismo es igual a uno. Por tanto:

\[\vec u \cdot \vec v = {u_1}{v_1} + {u_2}{v_2} + {u_3}{v_3}\qquad (5)\]

Ahora también podemos escribir el módulo de un vector dependiendo de sus coordenadas:

\[{\left| {\vec u} \right|^2} = \vec u \cdot \vec u \Rightarrow \left| {\vec u} \right| =  + \sqrt {\vec u \cdot \vec u}  \Rightarrow \left| {\vec u} \right| =  + \sqrt {u_1^2 + u_2^2 + u_3^2}\]

Algunas aplicaciones del producto escalar de vectores

Ángulo de dos rectas

De la definición de producto escalar de dos vectores podemos deducir el ángulo que forman ambos.

\[\vec u \cdot \vec v = \left| {\vec u} \right|\,\,\left| {\vec v} \right|\cos \alpha  \Rightarrow \cos \alpha  = \frac{{\vec u \cdot \vec v}}{{\left| {\vec u} \right|\,\,\left| {\vec v} \right|}} \Rightarrow \cos \alpha  = \frac{{{u_1}{v_1} + {u_2}{v_2} + {u_3}{v_3}}}{{\sqrt {u_1^2 + u_2^2 + u_3^2} \sqrt {v_1^2 + v_2^2 + v_3^2} }}\]

Si se trata de dos rectas, el ángulo formado entre ellas será el mismo que el que formen sus vectores directores.

Es posible que al hacer los cálculos el valor de   salga positivo o bien su valor sea negativo. En el primer caso el ángulo obtenido es agudo, y en el segundo es obtuso. Por convenio tomaremos como ángulo entre dos vectores o entre dos rectas el ángulo agudo. Para ello reescribiremos nuestra fórmula así:

\[\cos \alpha  = \frac{{\left| {{u_1}{v_1} + {u_2}{v_2} + {u_3}{v_3}} \right|}}{{\sqrt {u_1^2 + u_2^2 + u_3^2} \sqrt {v_1^2 + v_2^2 + v_3^2} }}\]

Al tomar el valor absoluto en el numerador, el valor de \(\cos\alpha\) siempre será positivo y, por tanto, \(\alpha\) será un ángulo agudo.

Observemos también que dos vectores serán perpendiculares (o dos rectas serán perpendiculares) cuando \(\cos\alpha=0\), es decir, cuando \({u_1}{v_1} + {u_2}{v_2} + {u_3}{v_3} = 0\). Simbólicamente:

\[r \bot s \Leftrightarrow \vec u \bot \vec v \Leftrightarrow \vec u \cdot \vec v = 0 \Leftrightarrow {u_1}{v_1} + {u_2}{v_2} + {u_3}{v_3} = 0\]

Vector perpendicular a un plano

Un vector \(\vec u\) es perpendicular a un plano \(\pi\) cuando \(\vec u\) es perpendicular a cualquier vector contenido en \(\pi\).

producto escalar 06

Dado el plano \(\pi\) de ecuación \(Ax + By + Cz + D = 0\) se tiene que \(\vec u = \left( {A,B,C} \right)\) son las coordenadas del un vector perpendicular al plano. Es decir: \(\vec u = \left( {A,B,C} \right) \bot \pi\).

Para demostrar que lo anterior es cierto se toman dos puntos cualesquiera \(M\left( {{m_1},{m_2},{m_3}} \right)\) y \(P\left( {{p_1},{p_2},{p_3}} \right)\) del plano \(\pi\), y efectuamos el producto escalar del vector \(\vec u = \left( {A,B,C} \right)\) con el vector \(\overrightarrow {MP}\). Si el resultado es cero, entonces \(\vec u \bot \overrightarrow {MP}\), con lo que \(\vec u \bot \pi\).

\[\vec u \cdot \overrightarrow {MP}  = \left( {A,B,C} \right) \cdot \left( {{p_1} - {m_1},{p_2} - {m_2},{p_3} - {m_3}} \right) = A\left( {{p_1} - {m_1}} \right) + B\left( {{p_2} - {m_2}} \right) + C\left( {{p_3} - {m_3}} \right) =\]

\[= \left( {A{p_1} + B{p_2} + C{p_3}} \right) - \left( {A{m_1} + B{m_2} + C{m_3}} \right) =  - D - \left( { - D} \right) = 0\]

La última igualdad es cierta porque tanto \(M\left( {{m_1},{m_2},{m_3}} \right)\) como \(P\left( {{p_1},{p_2},{p_3}} \right)\) son puntos del plano \(\pi\).

Ángulo de dos planos

Dados dos planos \(\pi\) y \(\pi'\), el ángulo formado por ambos es el que forman dos vectores contenidos en cada uno de los planos respectivos que sean perpendiculares a la recta intersección de los dos planos, es decir, el ángulo de los dos planos es el formado por los vectores \(\vec v\) y \(\vec v'\) de la figura.

Si \(\vec u\) y \(\vec u'\) son dos vectores perpendiculares a cada uno de los planos respectivos, podemos observar que el ángulo que forman  \(\vec u\) y \(\vec u'\) es el mismo que el de \(\vec v\) y \(\vec v'\).

producto escalar 07

Por lo tanto, si las ecuaciones de ambos planos son \(\pi  \equiv Ax + By + Cz + D = 0\) y \(\pi ' \equiv A'x + B'y + C'z + D' = 0\), entonces los vectores \(\vec u = \left( {A,B,C} \right)\) y \(\vec u' = \left( {A',B',C'} \right)\) son perpendiculares a los planos respectivos, luego:

\[\cos \alpha  = \frac{{\left| {AA' + BB' + CC'} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} \sqrt {A'{\,^2} + B'{\,^2} + C'{\,^2}} }}\]

Hemos tomado valor absoluto para obtener el ángulo agudo.

En particular dos planos serán perpendiculares cuando \(\cos\alpha=0\), es decir, cuando \(AA' + BB' + CC' = 0\):

\[\pi  \bot \pi ' \Leftrightarrow \vec u \bot \vec u' \Leftrightarrow \vec u \cdot \vec u' = 0 \Leftrightarrow AA' + BB' + CC' = 0\]

Ángulo entre recta y plano

Dada una recta \(r\) y un plano \(\pi\), el ángulo formado por ambos es aquel que forman \(r\) y \(r'\), donde \(r'\) es la proyección ortogonal de \(r\) sobre \(\pi\). La recta \(r'\) se obtiene como intersección de \(\pi\) con el plano que contiene a la recta \(r\) y es perpendicular a \(\pi\).

producto escalar 08

Si \(\vec v\) y \(\vec v'\) son dos vectores de \(r\) y \(r'\), el ángulo formado por \(r\) y \(\pi\) es el que forman \(\vec v\) y \(\vec v'\). Si \(\vec u\) es un vector perpendicular a \(\pi\), ese ángulo es complementario del formado por \(\vec u\) y \(\vec v\). Por lo tanto, si las ecuaciones de la recta son \(r \equiv \frac{{x - {a_1}}}{{{v_1}}} = \frac{{y - {a_2}}}{{{v_2}}} = \frac{{z - {a_3}}}{{{v_3}}}\), y la ecuación general o implícita del plano es \(\pi  \equiv Ax + By + Cz + D = 0\), tenemos que \(\text{sen}\,\alpha  = \cos \left( {\frac{\pi }{2} - \alpha } \right)\), luego

\[\text{sen}\,\alpha  = \frac{{\left| {A{v_1} + B{v_2} + C{v_3}} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} \sqrt {{v_1}^2 + {v_2}^2 + {v_3}^2} }}\]

Distancia de un punto a un plano, distancia entre dos planos paralelos y distancia entre una recta y un plano paralelos

Dados un punto \(P\) y un plano \(\pi\), se llama distancia de \(P\) a \(\pi\), \(d(P,\pi)\), a la distancia de \(P\) a \(M\), donde \(M\) es el punto de intersección de \(\pi\) con la recta que pasa por \(P\) y es perpendicular a \(\pi\).

producto escalar 09

Supongamos que el punto \(P\) tiene coordenadas \(P\left( {{p_1},\,\,{p_2},\,\,{p_3}} \right)\) y que el plano \(\pi\) tiene ecuación implícita \(\pi  \equiv Ax + By + Cz + D = 0\). Entonces la distancia de \(P\) a \(\pi\) viene dada por:

\[d\left( {P,\pi } \right) = \frac{{\left| {A{p_1} + B{p_2} + C{p_3} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\]

Para demostrarlo supongamos que \(M\left( {{m_1},\,\,{m_2},\,\,{m_3}} \right)\), \(\overrightarrow {MP}  = \left( {{p_1} - {m_1},\,\,{p_2} - {m_2},\,\,{p_3} - {m_3}} \right)\) y que \(\vec u = \left( {A,B,C} \right)\) es el vector perpendicular al plano. Obviamente \(d\left( {P,\,\,\pi } \right) = \left| {\overrightarrow {MP} } \right|\).

Pero, por un lado

\[\vec u \cdot \overrightarrow {MP}  = A\left( {{p_1} - {m_1}} \right) + B\left( {{p_2} - {m_2}} \right) + C\left( {{p_3} - {m_3}} \right)\]

y, por otro,

\[\vec u \cdot \overrightarrow {MP}  = \left| {\vec u} \right|\left| {\overrightarrow {MP} } \right|\cos \alpha  = \sqrt {{A^2} + {B^2} + {C^2}} \left| {\overrightarrow {MP} } \right|\left( { \pm 1} \right)\]

(el ángulo \(\alpha\) que forman \(\vec u\) y \(\overrightarrow {MP}\) es \(0\) o \(180\)).

Entonces, igualando ambas expresiones:

\[\pm \sqrt {{A^2} + {B^2} + {C^2}} \left| {\overrightarrow {MP} } \right| = A\left( {{p_1} - {m_1}} \right) + B\left( {{p_2} - {m_2}} \right) + C\left( {{p_3} - {m_3}} \right) \Rightarrow\]

\[\Rightarrow \left| {\overrightarrow {MP} } \right| =  \pm \frac{{A\left( {{p_1} - {m_1}} \right) + B\left( {{p_2} - {m_2}} \right) + C\left( {{p_3} - {m_3}} \right)}}{{\sqrt {{A^2} + {B^2} + {C^2}} }} =  \pm \frac{{A{p_1} + B{p_2} + C{p_3} - \left( {A{m_1} + B{m_2} + C{m_3}} \right)}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\]

Pero \(M \in \pi\), por lo que

\[A{m_1} + B{m_2} + C{m_3} + D = 0 \Rightarrow A{m_1} + B{m_2} + C{m_3} =  - D \Rightarrow \left| {\overrightarrow {MP} } \right| =  \pm \frac{{A{p_1} + B{p_2} + C{p_3} + D}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\]

y como la distancia es siempre un número no negativo, entonces

\[\left| {\overrightarrow {MP} } \right| = d(P,\pi ) = \frac{{\left| {A{p_1} + B{p_2} + C{p_3} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\]

Si dos planos son paralelos la distancia entre ambos será la distancia de un punto cualquiera de uno de ellos al otro. Del mismo modo, si una recta un plano son paralelos, la distancia de la recta al plano será la distancia de un punto cualquiera de la recta al plano.


Puedes descargar el artículo completo en pdf haciendo clic aquí.


Leer más ...

El radián

Cuando se comienza a trabajar la trigonometría, la medida de los ángulos que se utiliza es el grado sexagesimal. Esta medida proviene de la antigua Babilonia. Los babilonios supusieron, en un principio, que el año tenía 360 días y tomaron como medida angular "el recorrido diario del sol alrededor de la Tierra". Esta forma de medir ha perdurado hasta nuestros días y su influencia se ha dejado notar, también, en la medición del tiempo.

Un grado sexagesimal es, por tanto, cada una de las 360 partes iguales en las que se divide una circunferencia. Cada grado se divide en 60 minutos, y cada minuto en 60 segundos.

Otra medida de los ángulos es el radián.

Definición

Si se toma cualquier circunferencia de radio \(r=\overline{OA}\) y se lleva esta longitud \(r\) sobre un arco de la circunferencia, es decir, \(r=\overline{OA}=\text{longitud}\,AB\), el ángulo central \(\alpha\) determinado por el arco y sus radios mide un radián: \(1\,\text{rad}\).

radian01

Relación entre grados sexagesimales y radianes

Para calcular a cuántos radianes equivale un ángulo completo de \(360^{\text{o}}\), basta con aplicar una sencilla relación de proporcionalidad directa. Dibujamos una circunferencia de radio \(r\) . Si a un arco de longitud \(r\) le corresponde un radián, a un arco de longitud la longitud de la circunferencia, \(2\pi r\) , le corresponderán \(x\) radianes. Es decir:

\[\frac{r}{2\pi r}=\frac{1}{x}\Rightarrow x=\frac{2\pi r}{r}=2\pi\]

Esto quiere decir que a un ángulo completo de \(360^{\text{o}}\) le corresponden \(2\pi\) radianes, o lo que es lo mismo, a un ángulo de \(180^{\text{o}}\) le corresponden \(\pi\) radianes. De este modo, para convertir un ángulo dado en grados, \(\alpha^{\text{o}}\), en radianes, \(\alpha\,\text{rad}\), o viceversa, basta con utilizar la siguiente proporción:

\[\frac{\alpha^{\text{o}}}{\alpha\,\text{rad}}=\frac{180^{\text{o}}}{\pi}\]

Veamos como ejemplo a cuantos grados sexagesimales equivale un radián:

\[\frac{\alpha^{\text{o}}}{1\,\text{rad}}=\frac{180^{\text{o}}}{\pi}\Rightarrow \alpha=\frac{1\cdot180}{\pi}\approx57,296^{\text{o}}\]

O sea, un radián es igual, aproximadamente, a \(57,296^{\text{o}}\), que expresado en grados minutos y segundos es:

\[1\,\text{rad}\approx57^{\text{o}}\,15'\,45''\]

Uso de la calculadora

Para hallar las razones trigonométricas de un ángulo dado en radianes hay que empezar poniendo la calculadora en el modo radianes: MODE RAD. Cada calculadora tiene una combinación de teclas propia para pasar al modo radianes. Normalmente una calculadora viene en modo grados sexagesimales: MODE DEG, que suele venir indicado con una D, o la abreviatura DEG en la parte superior. Cuando pasamos al modo radianes con la combinación de teclas adecuada, en la parte superior aparecerá una R o la abreviatura RAD. En estos momentos ya está lista la calculadora para hacer cálculos en radianes. Veamos un ejemplo.

Con la calculadora en el modo grados sexagesimales es muy fácil obtener que \(\text{sen}\,72^{\text{o}}\approx0,951\). Para ver que obtenemos el mismo valor en radianes, pasaremos \(72^{\text{o}}\) a radianes, y luego calcularemos el seno del valor obtenido, ya con la calculadora en el modo radianes.

\[\frac{72^{\text{o}}}{x\,\text{rad}}=\frac{180^{\text{o}}}{\pi}\Rightarrow x=\frac{72\cdot\pi}{180}=\frac{2\pi}{5}\text{rad}\]

Ahora, con la calculadora en modo radianes, podemos comprobar también que \(\text{sen}\dfrac{2\pi}{5}\approx0,951\).

Leer más ...

Ángulos central e inscrito en una circunferencia

Ver artículo en formato imprimible (pdf) aquí

Dados dos puntos \(A\) y \(C\) en una circunferencia, los radios desde el centro \(O\) de la circunferencia a esos dos puntos forman un ángulo central \(\widehat{AOC}\).

Ángulos central e inscrito en una circunferencia

Figura 1. Ángulos central e inscrito en una circunferencia

Un ángulo inscrito es un ángulo subtendido en un punto \(B\) de la circunferencia por otros dos puntos de la circunferencia \(A\) y \(C\). El ángulo inscrito \(\widehat{ABC}\) está definido por dos cuerdas de una circunferencia que tienen un extremo común, en el caso de la figura 1, \(\overline{AB}\) y \(\overline{CB}\).

Según Los Elementos de Euclides (Libro III, proposición 20), "en una circunferencia, el ángulo cuyo vértice está en el centro es el doble del ángulo cuyo vértice está en la circunferencia cuando los rayos que forman los ángulos cortan a la circunferencia en los mismos dos puntos". Esta proposición también se llama teorema del ángulo central: "el ángulo central subtendido por dos puntos de una circunferencia es el doble que cualquier ángulo inscrito subtendido por esos dos puntos". Simbólicamente, en la figura 1, \(\widehat{AOC}=2\cdot \widehat{ABC}\).

Para demostrar este resultado vamos a demostrar antes otros dos casos más sencillos.

En el primero de ellos se afirma que ''si un ángulo inscrito subtiende un diámetro entonces es un ángulo recto". Este es un caso particular del teorema del ángulo central pues en este caso el ángulo central es un ángulo llano, de \(180^{\text{o}}\). Es decir, hemos de demostrar que \(\widehat{ABC}=90^{\text{o}}\) (ver figura 2).

angulos circunferencia 02

Figura 2. Ángulo inscrito que subtiende un diámetro

Nótese en primer lugar que, como \(\overline{OA}\), \(\overline{OB}\) y \(\overline{OC}\) tienen la misma longitud al ser radios de la circunferencia, los triángulos \(AOB\) y \(BOC\) son isósceles. Es conocido que los ángulos de la base de un triángulo isósceles son iguales, en este caso, \(\widehat{OAB}=\widehat{OBA}\) y \(\widehat{OBC}=\widehat{OCB}\). Sumando los ángulos del triángulo \(ABC\) podemos escribir:

\[180^{\text{o}}=\widehat{CAB}+\widehat{ABC}+\widehat{BCA}=\widehat{OAB}+(\widehat{OBA}+\widehat{OBC})+\widehat{OCB}=\]

\[=(\widehat{OAB}+\widehat{OBA})+(\widehat{OBC}+\widehat{OCB})=2\cdot\widehat{OBA}+2\cdot\widehat{OBC}\]

Eliminando los pasos intermedios:

\[180^{\text{o}}=2\cdot\widehat{OBA}+2\cdot\widehat{OBC}\]

Entonces, dividiendo todos los términos entre 2, queda demostrado lo que pretendíamos:

\[90^{\text{o}}=\widehat{OBA}+\widehat{OBC}=\widehat{ABC}\]

En el segundo de los casos consideraremos también el caso particular del teorema del ángulo central en el que una de las cuerdas que forman el ángulo inscrito es un diámetro. En este caso tendremos que demostrar que \(2\cdot\widehat{ABC}=\widehat{AOC}\) (ver figura 3).

Una de las cuerdas que forman el ángulo inscrito es un diámetro

Figura 3. Una de las cuerdas que forman el ángulo inscrito es un diámetro

Dibujamos la línea \(\overline{OP}\) paralela a \(\overline{OB}\), con lo que claramente \(\widehat{ABC}=\widehat{POC}\) (obsérvese la parte de la derecha de la figura 3). Pero es que también se cumple que \(\widehat{ABC}=\widehat{BAO}=\widehat{AOP}\). Por tanto

\[\widehat{AOC}=\widehat{AOP}+\widehat{POC}=\widehat{ABC}+\widehat{ABC}=2\cdot \widehat{ABC}\]

tal y como queríamos demostrar.

Volvamos a la figura 1. Utilizaremos este último caso para demostrar el teorema del ángulo central. Recordemos que teníamos que demostrar que \(\widehat{AOC}=2\cdot \widehat{ABC}\).

angulos circunferencia 04

Figura 4. El ángulo central es el doble del ángulo inscrito

Para ello vamos a trazar un diámetro \(\overline{BD}\) que pase por el vértice del ángulo inscrito (véase la figura 4 en la página anterior). Por el caso anterior tenemos:

\[\widehat{AOD}=2\cdot\widehat{ABD}\quad;\quad\widehat{COD}=2\cdot\widehat{CBD}\]

Sumando miembro a miembro ambas igualdades:

\[\widehat{AOD}+\widehat{COD}=2\cdot(\widehat{ABD}+\widehat{CBD})\]

Por tanto:

\[\widehat{AOC}=2\cdot \widehat{ABC}\]

Estos resultados se utilizan con frecuencia para demostrar otros de bastante importancia en matemáticas.

Por ejemplo, haciendo uso del resultado que dice que si un ángulo inscrito subtiende un diámetro entonces es un ángulo recto, se demuestra, en el teorema de los senos que

\[\frac{a}{\text{sen}A}=\frac{b}{\text{sen}B}=\frac{a}{\text{sen}C}=2r\]

donde \(r\) es el radio de la circunferencia circunscrita al triángulo de lados \(a\), \(b\) y \(c\), y de vértices (y ángulos), opuestos a cada lado, \(A\), \(B\) y \(C\). Puedes ver la demostración aquí.

Leer más ...

3. Ángulo de dos rectas

Al cortarse dos rectas aparecen cuatro ángulo, dos a dos iguales (figura 4).

angulorectas01

Se conviene en llamar ángulo de las rectas r y s a uno de los dos menores iguales que forman. Por tanto:

angulorectas02

y, entonces,

angulorectas03

El ángulo de dos rectas es el ángulo que forman sus vectores directores. Si las rectas son:

angulorectas04

angulorectas05 ,

el ángulo que forman se puede calcular despejando de la expresión del prodcuto escalar de dos vectores:

angulorectas06

Si usamos las componentes correspondientes:

angulorectas07

De acuerdo con lo que se ha establecido (el ángulo se encuentra entre cero y noventa grados), tomamos el numerador en valor absoluto y en el denominador, las raíces cuadradas positivas.

Ejemplo 5

Halla el ángulo que forman las rectas

angulorectas08


 

Los vectores directores de rs son, respectivamente:

angulorectas09

Entonces:

angulorectas10

Ejemplo 6

Las rectas

angulorectas11

se cortan en un punto A, que es vértice de un triángulo obtusángulo en A. Calcula el ángulo A de ese triángulo.


 

Los vectores directores de r y s son, respectivamente:

angulorectas12

Por tanto:

angulorectas13

Como el ángulo A es obtuso:

angulorectas14

← 2. Distancias entre puntos

4. Ecuación punto-pendiente. Otras ecuaciones de la recta →

Leer más ...

Apuntes de Geometría para Matemáticas II

En los apuntes siguientes se trata, de manera esquemática (son "sólo" 13 páginas), todo el bloque de geometría de la materia Matemáticas II, de 2º de Bachillerato (modalidad de Ciencias y Tecnología). Los contenidos están divididos de la siguiente manera.

Matemáticas II - Geometría

  1. Coordenadas o componentes de un vector.
  2. División de un segmento en n partes iguales.
  3. Vector director de una recta y ecuaciones de la recta.
  4. Ecuaciones de un plano.
  5. Posiciones relativas de dos rectas.
  6. Posiciones relativas de una recta y un plano.
  7. Posiciones relativas de dos planos.
  8. Ecuaciones implícitas de la recta.
  9. Haz de planos.
  10. Producto escalar de dos vectores.
  11. Producto vectorial de dos vectores.
  12. Producto mixto de tres vectores.
  13. Ángulo de dos vectores.
  14. Vector perpendicular a un plano.
  15. Ángulo de dos rectas.
  16. Ángulo de dos planos.
  17. Ángulo de recta y plano.
  18. Distancia entre dos puntos.
  19. Ecuación normal de un plano.
  20. Distancia de un punto a un plano.
  21. Distancia entre dos planos paralelos.
  22. Distancia de un punto a una recta.
  23. Distancia entre una recta y un plano paralelos.
  24. Distancia entre dos rectas paralelas.
  25. Distancia entre dos rectas que se cruzan.
  26. Área de un triángulo.
  27. Área de un paralelogramo.
  28. Volumen de un tetraedro.
  29. Volumen de un paralelepípedo.

Descárgalos aquí:

Apuntes de geometría. Matemáticas II. 2º Bachillerato.

Leer más ...
Suscribirse a este canal RSS

lasmatematicas.eu

Aplicaciones

Sígueme

webs de matemáticas