Menu
Distancia entre dos rectas que se cruzan. Perpendicular común

Distancia entre dos rectas que se c…

En un espacio de tres dim...

La regla de Cramer

La regla de Cramer

Consideremos un sistema d...

¿Necesitas ayuda con las matemáticas? ¿Piensas que nunca serás capaz de entenderlas?

¿Necesitas ayuda con las matemática…

Ahora puedes tener un pro...

Completando cuadrados. Aplicación al cálculo de primitivas o integrales indefinidas

Completando cuadrados. Aplicación a…

Supongamos que me piden c...

La Universidad Europea de Madrid (UEM)

La Universidad Europea de Madrid (U…

La Universidad Europea de...

Cuadratura de un segmento de parábola

Cuadratura de un segmento de parábo…

Una forma de acercarse al...

Prev Next

Usos de la trigonometría. Cálculo de alturas y distancias (VII)

Ver artículo en formato imprimible (pdf) aquí

Altura de un objeto situado sobre un montículo, desde un terreno horizontal sin obstáculos

Deseamos calcular la altura \(\overline{AB}=x\) de un objeto situado sobre un montículo o punto elevado, desde un terreno horizontal sin obstáculos en el que estamos situados, tal y como se muestra en la figura.

trig11

Elegimos un punto \(C\) arbitrario y medimos el ángulo de elevación de \(A\), que llamaremos \(\alpha\). Moviéndonos en el plano determinado por \(A\), \(B\) y \(C\) nos desplazamos hasta un punto \(D\) y medimos \(\overline{CD}=d\), desde donde calculamos los respectivos ángulos de elevación de \(A\) y de \(B\), a los que llamaremos \(\beta\) y \(\gamma\), respectivamente.

El método a seguir consiste en calcular \(\overline{AD}\) en el triángulo \(ACD\) aplicando el teorema de los senos. Téngase en cuenta que en el triángulo \(ACD\) conocemos \(\overline{CD}=d\) y dos ángulos, \(\widehat{ACD}=\alpha\) y \(\widehat{ADC}=180^{\text{o}}-\beta\), lo que significa que también podemos calcular el tercero de los ángulos: \(\widehat{CAD}=180^{\text{o}}-(\alpha+180^{\text{o}}-\beta)=\beta-\alpha\).

\[\frac{\overline{AD}}{\text{sen}\,\widehat{ACD}}=\frac{d}{\text{sen}\,\widehat{CAD}}\Rightarrow\overline{AD}=\frac{d\cdot\text{sen}\,\alpha}{\text{sen}(\beta-\alpha)}\]

Finalmente, con el resultado anterior, se calcula \(x\) en el triángulo \(ABD\) aplicando otra vez el teorema de los senos. En este triángulo conocemos un lado, \(\overline{AD}\) y dos ángulos, \(\widehat{ADB}=\beta-\gamma\) y \(\widehat{DAB}=90^{\text{o}}-\beta\). Al igual que anteriormente esta información permite calcular el tercero de los ángulos: \(\widehat{ABD}=180^{\text{o}}-(\beta-\gamma+90^{\text{o}}-\beta)=90^{\text{o}}+\gamma\).

\[\frac{x}{\text{sen}\,\widehat{ADB}}=\frac{\overline{AD}}{\text{sen}\,\widehat{ABD}}\Rightarrow x=\frac{\overline{AD}\cdot\text{sen}(\beta-\gamma)}{\text{sen}(90^{\text{o}}+\gamma)}\]

Ejemplo

Una columna está situada sobre un peñón. Desde un punto \(C\) la parte superior de la misma se ve con un ángulo de elevación de \(55^{\text{o}}\). Situándonos en un punto \(D\), 40 metros más cerca, se constata que dicho ángulo de elevación se transforma en \(80^{\text{o}}\) y que el ángulo de elevación a la base de la columna es de \(60^{\text{o}}\). ¿Cuál es la altura de la columna?

trig12

Solución

Si nos fijamos en la figura anterior, los datos que proporciona el enunciado del problema son los siguientes. \(\alpha=55^{\text{o}}\), \(\beta=80^{\text{o}}\), \(\gamma=60^{\text{o}}\) y \(d=40\) metros. Entonces, en el triángulo \(ACD\) tenemos:

\[\overline{AD}=\frac{d\cdot\text{sen}\,\alpha}{\text{sen}(\beta-\alpha)}=\frac{40\cdot\text{sen}\,55^{\text{o}}}{\text{sen}\,25^{\text{o}}}\approxeq77,53\]

Por tanto, en el triángulo \(ABD\):

\[x=\frac{\overline{AD}\cdot\text{sen}(\beta-\gamma)}{\text{sen}(90^{\text{o}}+\gamma)}=\frac{77.53\cdot\text{sen}\,20^{\text{o}}}{\text{sen}\,150^{\text{o}}}\approxeq53,03\]

Es decir, la altura \(\overline{AB}\) de la columna es, aproximadamente, 53,03 metros.

volver arriba

lasmatematicas.eu

Aplicaciones

Sígueme

webs de matemáticas