Menu
La regla de Cramer

La regla de Cramer

Consideremos un sistema d...

¿Necesitas ayuda con las matemáticas? ¿Piensas que nunca serás capaz de entenderlas?

¿Necesitas ayuda con las matemática…

Ahora puedes tener un pro...

Completando cuadrados. Aplicación al cálculo de primitivas o integrales indefinidas

Completando cuadrados. Aplicación a…

Supongamos que me piden c...

La Universidad Europea de Madrid (UEM)

La Universidad Europea de Madrid (U…

La Universidad Europea de...

Cuadratura de un segmento de parábola

Cuadratura de un segmento de parábo…

Una forma de acercarse al...

Ejercicios de aplicaciones de las derivadas y del teorema del valor medio

Ejercicios de aplicaciones de las d…

Se proponen a continuaci&...

Aplicaciones de las derivadas. El teorema del valor medio

Aplicaciones de las derivadas. El t…

Ya hemos hablado en un pa...

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. R…

Cuando en las matem&aacut...

Prev Next

Cuatro problemas de trigonometría para profundizar

Problemas de trigonometría Problemas de trigonometría

Se proponen a continuación cuatro problemas de trigonometría para profundizar un poco más en esta parte de las matemáticas. Estos apuntes de trigonometría os pueden servir para aprender o repasar los conceptos fundamentales. Estos mismos conceptos los podéis ver en la siguiente presentación sobre trigonometría.

Es importante intentar hacerlos antes de hacer clic sobre el desplegable para ver la resolución del problema correspondiente.

Problema 1

Dos vías de tren de \(1,4\) m de ancho se cruzan formando un rombo. Si un ángulo de corte es de \(40^\text{o}\), ¿cuánto valdrá el lado del rombo?

Este problema se puede resolver con cierta facilidad si se realiza un dibujo adecuado.

problema trigonometria 1

Observa que las dos vías se cruzan en el rombo \(ABCD\), y que el triángulo \(ADE\) es claramente rectángulo. En este último triángulo conocemos el lado \(DE=1,4\ \text{m}\) (el ancho de las vías). Además hemos llamado \(x=AD\) al lado del rombo. Entonces:

\[\text{sen}\,40^{\text{o}}=\frac{DE}{AD}=\frac{1,4}{x}\Rightarrow x=\frac{1,4}{\text{sen}\,40^{\text{o}}}=\frac{1,4}{0,643}\approx2,18\]

Por tanto el lado del rombo mide, aproximadamente, \(2,18\) metros.

Problema 2

Para hallar la distancia entre dos puntos inaccesibles \(A\) y \(B\), fijamos dos puntos \(C\) y \(D\) tales que \(\overline{CD}=300\) m, y medimos los siguientes ángulos: \(\widehat{ADB}=25^\text{o}\), \(\widehat{BDC}=40^\text{o}\), \(\widehat{ACD}=46^\text{o}\) y \(\widehat{ACB}=32^\text{o}\). Calcula la distancia entre \(A\) y \(B\).

problemas trigonometria 01

Con estos datos podemos calcular los ángulos \(\widehat{CAD}=180^\text{o}-65^\text{o}-46^\text{o}=69^\text{o}\) y \(\widehat{CBD}=180^\text{o}-40^\text{o}-78^\text{o}=60^\text{o}\).

Calculamos ahora \(\overline{AD}\) en el triángulo \(ACD\). Para ello aplicamos el teorema de los senos.

\[\frac{\overline{AD}}{\text{sen}\,46^\text{o}}=\frac{300}{\text{sen}\,69^\text{o}}\Rightarrow \overline{AD}=\frac{300\cdot\text{sen}\,46^\text{o}}{\text{sen}\,69^\text{o}}\approx223,22\]

De manera similar calculamos \(\overline{BD}\) en el triángulo \(BCD\).

\[\frac{\overline{BD}}{\text{sen}\,78^\text{o}}=\frac{300}{\text{sen}\,60^\text{o}}\Rightarrow \overline{AD}=\frac{300\cdot\text{sen}\,78^\text{o}}{\text{sen}\,60^\text{o}}\approx338,84\]

Finalmente calculamos la distancia entre \(A\) y \(B\), \(\overline{AB}\), aplicando el teorema del coseno en el triángulo \(ABD\).

\[\overline{AB}^2=\overline{AD}^2+\overline{BD}^2-2\cdot\overline{AD}\cdot\overline{BD}\cdot\cos\,25^\text{o}\approx\]

\[\approx223,22^2+338,84^2-2\cdot223,22\cdot338,84\cdot0,91=27540,97\Rightarrow\]

\[\Rightarrow \overline{AB}=\sqrt{27540,97}=165,95\]

Por tanto, la distancia entre \(A\) y \(B\) es, aproximadamente, \(165,95\) metros.

Problema 3

En un círculo de \(15\) cm de radio, halla el área comprendida entre una cuerda de \(20\) cm de longitud y el diámetro paralelo a ella.

Hagamos un dibujo de la situación expresada en el enunciado del problema:

problema trigonometria 2

Podemos dividir la zona sombreada, cuya área queremos calcular, en tres partes, \(S_1\), \(S_2\) y \(S_3\).

\(S_2\) es un triángulo isósceles cuyos lados iguales miden \(15\) cm y el lado desigual mide \(20\) cm. El área de este triángulo, que llamaremos \(A_2\), es \(A_2=\dfrac{20 h}{2}=10h\), donde \(h\) es la altura correspondiente al lado desigual. Es fácil darse cuenta de que, por el teorema de Pitágoras, \(15^2=10^2+h^2\), de donde \(h=\sqrt{15^2-10^2}=11,18\) cm2. Por tanto \(A_2=10\cdot11,18=111,8\) cm2.

También, utilizando el teorema del coseno, podemos calcular en este mismo triángulo el ángulo \(\beta\):

\[20^2=15^+15^2-2\cdot15\cdot15\cdot\cos\beta\Rightarrow450\cos\beta=225+225-400\Rightarrow\]

\[\Rightarrow450\cos\beta=50\Rightarrow\cos\beta=1,11\Rightarrow \beta=83,62^{\text{o}}\]

Obsérvese ahora que los sectores circulares \(S_1\) y \(S_3\) son iguales y de ángulo fácil de calcular una vez conocido \(\beta\): \(\alpha=\dfrac{180-\beta}{2}=48,19^{\text{o}}\). Si llamamos \(A_1\) y \(A_3\) al área de estos dos sectores tenemos que:

\[A_1=A_3=\dfrac{\pi\cdot r^2}{360^{\text{o}}}\alpha=\dfrac{\pi\cdot15^2}{360^{\text{o}}}48,19^{\text{o}}=94,62\,\text{cm}^2\]

Por tanto el área que nos piden es:

\[A_1+A_2+A_3=94,62+111,8+94,62=301,04\,\text{cm}^2\]

Problema 4

Dos circunferencias son tangentes exteriormente y sus radios miden \(9\) m y \(4\) m. Halla el ángulo \(2\alpha\), que forman sus tangentes comunes.

Observa la siguiente figura:

problemas trigonometria 02

volver arriba

lasmatematicas.eu

Aplicaciones

Sígueme

webs de matemáticas