Menu
Distancia entre dos rectas que se cruzan. Perpendicular común

Distancia entre dos rectas que se c…

En un espacio de tres dim...

La regla de Cramer

La regla de Cramer

Consideremos un sistema d...

¿Necesitas ayuda con las matemáticas? ¿Piensas que nunca serás capaz de entenderlas?

¿Necesitas ayuda con las matemática…

Ahora puedes tener un pro...

Completando cuadrados. Aplicación al cálculo de primitivas o integrales indefinidas

Completando cuadrados. Aplicación a…

Supongamos que me piden c...

La Universidad Europea de Madrid (UEM)

La Universidad Europea de Madrid (U…

La Universidad Europea de...

Cuadratura de un segmento de parábola

Cuadratura de un segmento de parábo…

Una forma de acercarse al...

Prev Next

6. Ecuación normal de la recta. Cosenos directores

ecnormal01

En la figura 9 hemos tomado la recta

parpend11

Sobre ella se consideran los puntos A(a1,a2) y X(x,y) que determinan el vector

ecnormal02

El vector z se ha construido unitario y perpendicular a r. Por tanto tiene la misma dirección que el vector v=(A,B). Para obtener z basta multiplicar v por el inverso de su módulo:

ecnormal03

Ahora bien:

ecnormal04

O sea:

ecnormal05

Pero si en la ecuación general sustituimos las coordenadas del punto A, resulta:

ecnormal06

Sustituyendo en (*):

ecnormal07

La ecuación anterior es la ecuación normal de la recta. Surge una pregunta: ¿qué significado tienen los coeficientes de la x y de la y de esa ecuación normal de la recta? Obsérvese que son las componentes del vector unitario z. Tales componentes de un vector unitario en una base ortonormal {i,j}, son el coseno y el seno del ángulo que forma con el vector i de la base. Así pues:

ecnormal08

Esas expresiones reciben el nombre de cosenos directores de r, pues la segunda también puede escribirse:

ecnormal09

Ejemplo 13

Halla los cosenos directores y escribe en forma normal la recta

ecnormal10


 Los cosenos directores son:

ecnormal11

Entonces:

ecnormal12

← 5. Paralelismo y perpendicularidad

7. Distancia de un punto a una recta →

volver arriba

lasmatematicas.eu

Aplicaciones

Sígueme

webs de matemáticas