Menu
¿Necesitas ayuda con las matemáticas? ¿Piensas que nunca serás capaz de entenderlas?

¿Necesitas ayuda con las matemática…

Ahora puedes tener un pro...

Completando cuadrados. Aplicación al cálculo de primitivas o integrales indefinidas

Completando cuadrados. Aplicación a…

Supongamos que me piden c...

La Universidad Europea de Madrid (UEM)

La Universidad Europea de Madrid (U…

La Universidad Europea de...

Cuadratura de un segmento de parábola

Cuadratura de un segmento de parábo…

Una forma de acercarse al...

Ejercicios de aplicaciones de las derivadas y del teorema del valor medio

Ejercicios de aplicaciones de las d…

Se proponen a continuaci&...

Aplicaciones de las derivadas. El teorema del valor medio

Aplicaciones de las derivadas. El t…

Ya hemos hablado en un pa...

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. R…

Cuando en las matem&aacut...

Series infinitas de números reales. Series convergentes

Series infinitas de números reales.…

Las sucesiones de n&uacut...

La paradoja de Zenón

La paradoja de Zenón

El filósofo griego...

Prev Next

El radián

Cuando se comienza a trabajar la trigonometría, la medida de los ángulos que se utiliza es el grado sexagesimal. Esta medida proviene de la antigua Babilonia. Los babilonios supusieron, en un principio, que el año tenía 360 días y tomaron como medida angular "el recorrido diario del sol alrededor de la Tierra". Esta forma de medir ha perdurado hasta nuestros días y su influencia se ha dejado notar, también, en la medición del tiempo.

Un grado sexagesimal es, por tanto, cada una de las 360 partes iguales en las que se divide una circunferencia. Cada grado se divide en 60 minutos, y cada minuto en 60 segundos.

Otra medida de los ángulos es el radián.

Definición

Si se toma cualquier circunferencia de radio \(r=\overline{OA}\) y se lleva esta longitud \(r\) sobre un arco de la circunferencia, es decir, \(r=\overline{OA}=\text{longitud}\,AB\), el ángulo central \(\alpha\) determinado por el arco y sus radios mide un radián: \(1\,\text{rad}\).

radian01

Relación entre grados sexagesimales y radianes

Para calcular a cuántos radianes equivale un ángulo completo de \(360^{\text{o}}\), basta con aplicar una sencilla relación de proporcionalidad directa. Dibujamos una circunferencia de radio \(r\) . Si a un arco de longitud \(r\) le corresponde un radián, a un arco de longitud la longitud de la circunferencia, \(2\pi r\) , le corresponderán \(x\) radianes. Es decir:

\[\frac{r}{2\pi r}=\frac{1}{x}\Rightarrow x=\frac{2\pi r}{r}=2\pi\]

Esto quiere decir que a un ángulo completo de \(360^{\text{o}}\) le corresponden \(2\pi\) radianes, o lo que es lo mismo, a un ángulo de \(180^{\text{o}}\) le corresponden \(\pi\) radianes. De este modo, para convertir un ángulo dado en grados, \(\alpha^{\text{o}}\), en radianes, \(\alpha\,\text{rad}\), o viceversa, basta con utilizar la siguiente proporción:

\[\frac{\alpha^{\text{o}}}{\alpha\,\text{rad}}=\frac{180^{\text{o}}}{\pi}\]

Veamos como ejemplo a cuantos grados sexagesimales equivale un radián:

\[\frac{\alpha^{\text{o}}}{1\,\text{rad}}=\frac{180^{\text{o}}}{\pi}\Rightarrow \alpha=\frac{1\cdot180}{\pi}\approx57,296^{\text{o}}\]

O sea, un radián es igual, aproximadamente, a \(57,296^{\text{o}}\), que expresado en grados minutos y segundos es:

\[1\,\text{rad}\approx57^{\text{o}}\,15'\,45''\]

Uso de la calculadora

Para hallar las razones trigonométricas de un ángulo dado en radianes hay que empezar poniendo la calculadora en el modo radianes: MODE RAD. Cada calculadora tiene una combinación de teclas propia para pasar al modo radianes. Normalmente una calculadora viene en modo grados sexagesimales: MODE DEG, que suele venir indicado con una D, o la abreviatura DEG en la parte superior. Cuando pasamos al modo radianes con la combinación de teclas adecuada, en la parte superior aparecerá una R o la abreviatura RAD. En estos momentos ya está lista la calculadora para hacer cálculos en radianes. Veamos un ejemplo.

Con la calculadora en el modo grados sexagesimales es muy fácil obtener que \(\text{sen}\,72^{\text{o}}\approx0,951\). Para ver que obtenemos el mismo valor en radianes, pasaremos \(72^{\text{o}}\) a radianes, y luego calcularemos el seno del valor obtenido, ya con la calculadora en el modo radianes.

\[\frac{72^{\text{o}}}{x\,\text{rad}}=\frac{180^{\text{o}}}{\pi}\Rightarrow x=\frac{72\cdot\pi}{180}=\frac{2\pi}{5}\text{rad}\]

Ahora, con la calculadora en modo radianes, podemos comprobar también que \(\text{sen}\dfrac{2\pi}{5}\approx0,951\).

Leer más ...

Fórmulas trigonométricas

Puedes encontrar aquí un esquema, en una sola página, de las 16 fórmulas que se demuestran en este artículo

Razones trigonométricas de la suma de dos ángulos

Vamos a obtener las razones trigonométricas del ángulo suma \(\alpha+\beta\) en función de las razones trigonométricas de \(\alpha\) y de \(\beta\). Para ello usaremos la siguiente figura, en la que se han representado los ángulos \(\alpha\), \(\beta\) y \(\alpha+\beta\).

formulas trigonometricas 1

En el triángulo de color rojo \(OAB\), cuya hipotenusa \(\overline{OB}\) la tomamos como unidad, se tiene claramente que:

\[\cos\beta=\overline{OA}\quad\text{;}\quad\text{sen}\,\beta=\overline{AB}\]

En el triángulo de color azul \(OPB\) tenemos que:

\[\text{sen}(\alpha+\beta)=\frac{\overline{PB}}{\overline{OB}}=\overline{PB}\qquad(\text{I})\]

Además, podemos expresar \(\overline{PB}\) como \(\overline{QA}+\overline{AC}\). También tenemos que:

\[\text{sen}\,\alpha=\frac{\overline{QA}}{\overline{OA}}\Rightarrow\overline{QA}=\overline{OA}\,\text{sen}\,\alpha=\cos\beta\,\text{sen}\,\alpha\]

\[\cos\alpha=\frac{\overline{AC}}{\overline{AB}}\Rightarrow\overline{AC}=\overline{AB}\,\cos\alpha=\text{sen}\,\beta\,\cos\alpha\]

Por tanto:

\[\overline{PB}=\text{sen}\,\alpha\,\cos\beta+\cos\alpha\,\text{sen}\,\beta\qquad(\text{II})\]

Igualando \((\text{I})\) y \((\text{II})\), obtenemos:

\[\text{sen}(\alpha+\beta)=\text{sen}\,\alpha\,\cos\beta+\cos\alpha\,\text{sen}\,\beta\]

A partir de la fórmula anterior y usando que \(\text{sen}(90^{\text{o}}+\phi)=\cos\phi\), y que \(\cos(90^{\text{o}}+\phi)=-\text{sen}\,\phi\), \(\forall\,\phi\), podemos demostrar una fórmula para el coseno de la suma de dos ángulos:

\[\cos(\alpha+\beta)=\text{sen}\left(90^{\text{o}}+(\alpha+\beta)\right)=\text{sen}\left((90^{\text{o}}+\alpha)+\beta\right)=\]

\[=\text{sen}(90^{\text{o}}+\alpha)\cos\beta+\cos(90^{\text{o}}+\alpha)\,\text{sen}\,\beta=\cos\alpha\cos\beta-\text{sen}\,\alpha\,\text{sen}\,\beta\]

También podemos probar igualmente una fórmula para la tangente de la suma de dos ángulos:

\[\text{tg}(\alpha+\beta)=\frac{\text{sen}(\alpha+\beta)}{\cos(\alpha+\beta)}=\frac{\text{sen}\,\alpha\,\cos\beta+\cos\alpha\,\text{sen}\,\beta}{\cos\alpha\cos\beta-\text{sen}\,\alpha\,\text{sen}\,\beta}=\]

Dividiendo todos los términos del numerador y del denominador entre \(\cos\alpha\cos\beta\) y simplificando nos queda:

\[\text{tg}(\alpha+\beta)=\frac{\text{tg}\,\alpha+\text{tg}\,\beta}{1-\text{tg}\,\alpha\,\text{tg}\,\beta}\]

Hemos obtenido pues las siguientes tres fórmulas, que son las razones trigonométricas de la suma de dos ángulos.

\[\text{sen}(\alpha+\beta)=\text{sen}\,\alpha\,\cos\beta+\cos\alpha\,\text{sen}\,\beta\qquad(1)\]

\[\cos(\alpha+\beta)=\cos\alpha\cos\beta-\text{sen}\,\alpha\,\text{sen}\,\beta\qquad(2)\]

\[\text{tg}(\alpha+\beta)=\frac{\text{tg}\,\alpha+\text{tg}\,\beta}{1-\text{tg}\,\alpha\,\text{tg}\,\beta}\qquad(3)\]

Razones trigonométricas de la diferencia de dos ángulos

Teniendo en cuenta que \(\text{sen}(-\phi)=-\text{sen}\,\phi\) y que \(\cos(-\phi)=-\cos\phi\), si en la primera de las fórmulas anteriores ponemos \(-\beta\) en lugar de \(\beta\) obtenemos:

\[\text{sen}(\alpha-\beta)=\text{sen}(\alpha+(-\beta))=\text{sen}\,\alpha\,\cos(-\beta)+\cos\alpha\,\text{sen}(-\beta)=\]

\[=\text{sen}\,\alpha\,\cos\beta+\cos\alpha\,(-\text{sen}\,\beta)=\text{sen}\,\alpha\,\cos\beta-\cos\alpha\,\text{sen}\,\beta\]

Análogamente procederíamos con \(\cos(\alpha-\beta)\) y con \(\text{tg}(\alpha-\beta)\) para obtener las razones trigonométricas de la diferencia de dos ángulos. Las demostraciones son muy similares a la anterior.

\[\text{sen}(\alpha-\beta)=\text{sen}\,\alpha\,\cos\beta-\cos\alpha\,\text{sen}\,\beta\qquad(4)\]

\[\cos(\alpha-\beta)=\cos\alpha\cos\beta+\text{sen}\,\alpha\,\text{sen}\,\beta\qquad(5)\]

\[\text{tg}(\alpha-\beta)=\frac{\text{tg}\,\alpha-\text{tg}\,\beta}{1+\text{tg}\,\alpha\,\text{tg}\,\beta}\qquad(6)\]

Razones trigonométricas del ángulo doble

Si en las fórmulas \((1)\), \((2)\) y \((3)\) hacemos \(\alpha=\beta\), obtenemos las razones trigonométricas de \(2\alpha\) en función de \(\alpha\), es decir, las razones trigonométricas del ángulo doble. La demostración es obvia.

\[\text{sen}\,2\alpha=2\,\text{sen}\,\alpha\,\cos\alpha\qquad(7)\]

\[\cos2\alpha=\cos^2\alpha-\text{sen}^2\,\alpha\qquad(8)\]

\[\text{tg}\,2\alpha=\frac{2\text{tg}\,\alpha}{1-\text{tg}^2\,\alpha}\qquad(9)\]

Razones trigonométricas del ángulo mitad

Veremos ahora cómo se obtienen las razones trigonométricas del ángulo \(\dfrac{\alpha}{2}\) en función de \(\cos\alpha\).

Teniendo en cuenta que \(\alpha=2\cdot\dfrac{\alpha}{2}\), aplicando la fórmula \((8)\) tenemos:

\[\cos\alpha=\cos\left(2\cdot\frac{\alpha}{2}\right)=\cos^2\frac{\alpha}{2}-\text{sen}^2\frac{\alpha}{2}\qquad(\text{III})\]

También es cierta la fórmula fundamental de la trigonometría para cualquier ángulo, en particular, para el ángulo \(\dfrac{\alpha}{2}\):

\[1=\cos^2\frac{\alpha}{2}+\text{sen}^2\frac{\alpha}{2}\qquad(\text{IV})\]

Sumando y restando las igualdades \((\text{III})\) y \((\text{IV})\) se obtienen las dos igualdades siguientes:

\[1+\cos\alpha=2\cos^2\frac{\alpha}{2}\]

\[1-\cos\alpha=2\,\text{sen}^2\frac{\alpha}{2}\]

De estas igualdades se despejan, respectivamente, \(\cos\dfrac{\alpha}{2}\) y \(\text{sen}\dfrac{\alpha}{2}\). A partir de ellas se obtiene también \(\text{tg}\dfrac{\alpha}{2}\). Llegamos pues así a las razones trigonométricas del ángulo mitad.

\[\text{sen}\frac{\alpha}{2}=\pm\sqrt{\frac{1-\cos\alpha}{2}}\qquad(10)\]

\[\cos\frac{\alpha}{2}=\pm\sqrt{\frac{1+\cos\alpha}{2}}\qquad(11)\]

\[\text{tg}\frac{\alpha}{2}=\pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}}\qquad(12)\]

En cada caso, el signo será positivo o negativo según el cuadrante en el que se encuentre el ángulo \(\dfrac{\alpha}{2}\).

Sumas y diferencias de senos y de cosenos: transformación de sumas y diferencias en productos

A veces conviene expresar una suma o una diferencia en forma de producto. Vamos a deducir, por ejemplo, en qué producto se transforma la suma \(\cos A+\cos B\). Para ello nos basaremos en las fórmulas \((2)\) y \((5)\):

\[\cos(\alpha+\beta)=\cos\alpha\cos\beta-\text{sen}\,\alpha\,\text{sen}\,\beta\]

\[\cos(\alpha-\beta)=\cos\alpha\cos\beta+\text{sen}\,\alpha\,\text{sen}\,\beta\]

Sumando y restando las dos fórmulas anteriores obtenemos, respectivamente:

\[\cos(\alpha+\beta)+\cos(\alpha-\beta)=2\cos\alpha\cos\beta\qquad(\text{V})\]

\[\cos(\alpha+\beta)-\cos(\alpha-\beta)=-2\,\text{sen}\,\alpha\,\text{sen}\,\beta\qquad(\text{VI})\]

Es conveniente cambiar la notación para facilitar los cálculos, así que llamaremos \(\displaystyle\begin{cases}\alpha+\beta=A\\\alpha-\beta=B\end{cases}\). Si en el sistema anterior despejamos \(\alpha\) y \(\beta\) tenemos que \(\alpha=\dfrac{A+B}{2}\), \(\beta=\dfrac{A-B}{2}\). Si ahora sustituimos los valores anteriores en \((\text{V})\) y \((\text{VI})\), obtenemos:

\[\cos A+\cos B=2\cos\frac{A+B}{2}\cos\frac{A-B}{2}\]

\[\cos A-\cos B=-2\,\text{sen}\frac{A+B}{2}\,\text{sen}\frac{A-B}{2}\]

Si se procede de manera similar utilizando las fórmulas del seno de la suma y de la diferencia de dos ángulos se pueden obtener expresiones para transformar sumas y diferencias de senos en productos. De esta manera tenemos finalmente las sumas y diferencias de senos y cosenos, las cuales transforman sumas y diferencias en productos.

\[\text{sen}\,A+\text{sen}\,B=2\,\text{sen}\frac{A+B}{2}\,\cos\frac{A-B}{2}\qquad(13)\]

\[\text{sen}\,A+\text{sen}\,B=2\cos\frac{A+B}{2}\,\text{sen}\frac{A-B}{2}\qquad(14)\]

\[\cos A+\cos B=2\cos\frac{A+B}{2}\,\cos\frac{A-B}{2}\qquad(15)\]

\[\cos A-\cos B=-2\,\text{sen}\frac{A+B}{2}\,\text{sen}\frac{A-B}{2}\qquad(16)\]

Leer más ...

Cuatro problemas de trigonometría para profundizar

Se proponen a continuación cuatro problemas de trigonometría para profundizar un poco más en esta parte de las matemáticas. Estos apuntes de trigonometría os pueden servir para aprender o repasar los conceptos fundamentales. Estos mismos conceptos los podéis ver en la siguiente presentación sobre trigonometría.

Es importante intentar hacerlos antes de hacer clic sobre el desplegable para ver la resolución del problema correspondiente.

Problema 1

Dos vías de tren de \(1,4\) m de ancho se cruzan formando un rombo. Si un ángulo de corte es de \(40^\text{o}\), ¿cuánto valdrá el lado del rombo?

Este problema se puede resolver con cierta facilidad si se realiza un dibujo adecuado.

problema trigonometria 1

Observa que las dos vías se cruzan en el rombo \(ABCD\), y que el triángulo \(ADE\) es claramente rectángulo. En este último triángulo conocemos el lado \(DE=1,4\ \text{m}\) (el ancho de las vías). Además hemos llamado \(x=AD\) al lado del rombo. Entonces:

\[\text{sen}\,40^{\text{o}}=\frac{DE}{AD}=\frac{1,4}{x}\Rightarrow x=\frac{1,4}{\text{sen}\,40^{\text{o}}}=\frac{1,4}{0,643}\approx2,18\]

Por tanto el lado del rombo mide, aproximadamente, \(2,18\) metros.

Problema 2

Para hallar la distancia entre dos puntos inaccesibles \(A\) y \(B\), fijamos dos puntos \(C\) y \(D\) tales que \(\overline{CD}=300\) m, y medimos los siguientes ángulos: \(\widehat{ADB}=25^\text{o}\), \(\widehat{BDC}=40^\text{o}\), \(\widehat{ACD}=46^\text{o}\) y \(\widehat{ACB}=32^\text{o}\). Calcula la distancia entre \(A\) y \(B\).

problemas trigonometria 01

Con estos datos podemos calcular los ángulos \(\widehat{CAD}=180^\text{o}-65^\text{o}-46^\text{o}=69^\text{o}\) y \(\widehat{CBD}=180^\text{o}-40^\text{o}-78^\text{o}=60^\text{o}\).

Calculamos ahora \(\overline{AD}\) en el triángulo \(ACD\). Para ello aplicamos el teorema de los senos.

\[\frac{\overline{AD}}{\text{sen}\,46^\text{o}}=\frac{300}{\text{sen}\,69^\text{o}}\Rightarrow \overline{AD}=\frac{300\cdot\text{sen}\,46^\text{o}}{\text{sen}\,69^\text{o}}\approx223,22\]

De manera similar calculamos \(\overline{BD}\) en el triángulo \(BCD\).

\[\frac{\overline{BD}}{\text{sen}\,78^\text{o}}=\frac{300}{\text{sen}\,60^\text{o}}\Rightarrow \overline{AD}=\frac{300\cdot\text{sen}\,78^\text{o}}{\text{sen}\,60^\text{o}}\approx338,84\]

Finalmente calculamos la distancia entre \(A\) y \(B\), \(\overline{AB}\), aplicando el teorema del coseno en el triángulo \(ABD\).

\[\overline{AB}^2=\overline{AD}^2+\overline{BD}^2-2\cdot\overline{AD}\cdot\overline{BD}\cdot\cos\,25^\text{o}\approx\]

\[\approx223,22^2+338,84^2-2\cdot223,22\cdot338,84\cdot0,91=27540,97\Rightarrow\]

\[\Rightarrow \overline{AB}=\sqrt{27540,97}=165,95\]

Por tanto, la distancia entre \(A\) y \(B\) es, aproximadamente, \(165,95\) metros.

Problema 3

En un círculo de \(15\) cm de radio, halla el área comprendida entre una cuerda de \(20\) cm de longitud y el diámetro paralelo a ella.

Hagamos un dibujo de la situación expresada en el enunciado del problema:

problema trigonometria 2

Podemos dividir la zona sombreada, cuya área queremos calcular, en tres partes, \(S_1\), \(S_2\) y \(S_3\).

\(S_2\) es un triángulo isósceles cuyos lados iguales miden \(15\) cm y el lado desigual mide \(20\) cm. El área de este triángulo, que llamaremos \(A_2\), es \(A_2=\dfrac{20 h}{2}=10h\), donde \(h\) es la altura correspondiente al lado desigual. Es fácil darse cuenta de que, por el teorema de Pitágoras, \(15^2=10^2+h^2\), de donde \(h=\sqrt{15^2-10^2}=11,18\) cm2. Por tanto \(A_2=10\cdot11,18=111,8\) cm2.

También, utilizando el teorema del coseno, podemos calcular en este mismo triángulo el ángulo \(\beta\):

\[20^2=15^+15^2-2\cdot15\cdot15\cdot\cos\beta\Rightarrow450\cos\beta=225+225-400\Rightarrow\]

\[\Rightarrow450\cos\beta=50\Rightarrow\cos\beta=1,11\Rightarrow \beta=83,62^{\text{o}}\]

Obsérvese ahora que los sectores circulares \(S_1\) y \(S_3\) son iguales y de ángulo fácil de calcular una vez conocido \(\beta\): \(\alpha=\dfrac{180-\beta}{2}=48,19^{\text{o}}\). Si llamamos \(A_1\) y \(A_3\) al área de estos dos sectores tenemos que:

\[A_1=A_3=\dfrac{\pi\cdot r^2}{360^{\text{o}}}\alpha=\dfrac{\pi\cdot15^2}{360^{\text{o}}}48,19^{\text{o}}=94,62\,\text{cm}^2\]

Por tanto el área que nos piden es:

\[A_1+A_2+A_3=94,62+111,8+94,62=301,04\,\text{cm}^2\]

Problema 4

Dos circunferencias son tangentes exteriormente y sus radios miden \(9\) m y \(4\) m. Halla el ángulo \(2\alpha\), que forman sus tangentes comunes.

Observa la siguiente figura:

problemas trigonometria 02

Leer más ...

Cinco fórmulas para obtener el área de un triángulo

Consideremos el triángulo de la figura siguiente:

area-triangulo-01

Sabemos que el área o superficie \(S\) del mismo es la mitad del producto de una base por la altura correspondiente, es decir, viene dada por la conocida fórmula "base por altura partido por dos":

\[S=\frac{b\cdot h}{2}\qquad (1)\]

Observemos que en el triángulo rectángulo \(BHC\), se cumple que \(\text{sen}\,C=\dfrac{h}{a}\), es decir, \(h=a\cdot\text{sen}\,C\). Poniendo esta igualdad en la fórmula anterior, obtenemos esta otra:

\[S=\frac{b\cdot a\cdot\text{sen}\,C}{2}\qquad (2)\]

O sea, que el área de un triángulo es el semiproducto de dos de sus lados por el seno del ángulo que forman.

En un artículo de dedicado al teorema de los senos obteníamos la siguiente fórmula:

\[\frac{a}{\text{sen}\,A}=\frac{b}{\text{sen}\,B}=\frac{c}{\text{sen}\,C}=2R\]

En la fórmula anterior \(R\) es el radio de la circunferencia circunscrita al triángulo. Despejando \(\text{sen}\,C\) de la fórmula anterior tenemos que \(\text{sen}\,C=\dfrac{c}{2R}\). Si se sutituye esta igualdad en la fórmula \((2)\) se obtiene:

\[S=\frac{a\cdot b\cdot c}{4R}\qquad (3)\]

De este modo tenemos también que el área de un triángulo es el cociente entre el producto de sus lados y cuatro veces el radio de su circunferencia circunscrita.

Observemos ahora la figura siguiente:

 area-triangulo-02

En esta figura se ha dibujado la circunferencia inscrita al triángulo \(ABC\). Desde el incentro \(I\), se han formado tres triángulos: \(IAB\), \(IAC\) e \(ICB\), cuya suma de áreas completa el área \(S\) del triángulo \(ABC\).

Los radios de la circunferencia «hacen de alturas» de esos triángulos, porque son perpendiculares a los lados en los puntos de tangencia, así que:

\[\text{Área}[IAB]=\frac{c\cdot r}{2}\ \text{;}\ \text{Área}[IAC]=\frac{b\cdot r}{2}\ \text{;}\ \text{Área}[ICB]=\frac{a\cdot r}{2}\]

Por tanto:

\[S=\frac{c\cdot r}{2}+\frac{b\cdot r}{2}+\frac{a\cdot r}{2}\Rightarrow S=\frac{r\cdot(a+b+c)}{2}\]

Si llamamos \(s\) al semiperímetro del triángulo, como \(s=\dfrac{a+b+c}{2}\), tenemos:

\[S=r\cdot s\qquad (4)\]

Es decir, el área de un triángulo es igual al producto del radio de la circunferencia inscrita por su semiperímetro.

Por último, citamos la llamada fórmula de Herón, útil cuando se conocen los tres lados del triángulo. Es la siguiente:

\[S=\sqrt{s\cdot(s-a)\cdot(s-b)\cdot(s-c)}\qquad (5)\]

 Al igual que antes, \(s\) es el semiperímetro del triángulo.

Leer más ...

8 usos de la trigonometría para el cálculo de alturas y distancias

Con unas nociones básicas de trigonometría se puede hacer uso de la misma para calcular alturas y distancias entre puntos en situaciones muy diversas. Presentamos aquí 8 usos de la trigonometría para el cálculo de alturas y distancias. Son aplicaciones prácticas en las que se supone que contamos con el material necesario para medir ciertos ángulos (ángulos verticales, sobre todo de elevación, y ángulos horizontales) como, por ejemplo, un teodolito. En Topografía, el estudio de instrumentos y aparatos de medición es fundamental, pero eso es materia de estudios superiores. En todo caso estos apuntes sobre instrumentos topográficos son muy completos para el que desee echarles un vistazo. Sin embargo, a un nivel de matemáticas en Bachillerato, lo que interesa es ver la manera de establecer un método para solucionar el problema que se plantea, usando nociones básicas de trigonometría, por ejemplo, el teorema de los senos y/o el teorema del coseno.

Usos de la trigonometría. Cálculo de alturas y distancias

Leer más ...

Usos de la trigonometría. Cálculo de alturas y distancias (VIII)

Ver artículo en formato imprimible (pdf) aquí

Distancia entre dos puntos inaccesibles

Deseamos calcular la distancia \(\overline{AB}=x\) entre dos puntos \(A\) y \(B\) a los que no tenemos acceso, tal y como se muestra en la figura.

trig13

Para ello medimos una base arbitraria \(\overline{CD}\), situada en el mismo plano que \(A\) y \(B\). Desde \(C\) medimos los ángulos \(\widehat{ACD}=\alpha\) y \(\widehat{BCD}=\beta\). Desde \(D\) medimos también los ángulos \(\widehat{CDB}=\gamma\) y \(\widehat{CDA}=\delta\). Con estos datos también podemos conocer el ángulo \(\widehat{CAD}=180^{\text{o}}-\alpha-\delta\) y el ángulo \(\widehat{CBD}=180^{\text{o}}-\beta-\gamma\).

El método a seguir consiste en calcular previamente \(\overline{AC}\) en el triángulo \(ACD\) aplicando el teorema de los senos:

\[\frac{\overline{AC}}{\text{sen}\,\widehat{CDA}}=\frac{\overline{CD}}{\text{sen}\,\widehat{CAD}}\Rightarrow\overline{AC}=\frac{\overline{CD}\cdot\text{sen}\,\delta}{\text{sen}(180^{\text{o}}-\alpha-\delta)}\]

A continuación se calcula \(\overline{BC}\) en el triángulo \(BCD\) aplicando otra vez el teorema de los senos:

\[\frac{\overline{BC}}{\text{sen}\,\widehat{BDC}}=\frac{\overline{CD}}{\text{sen}\,\widehat{CBD}}\Rightarrow\overline{BC}=\frac{\overline{CD}\cdot\text{sen}\,\gamma}{\text{sen}(180^{\text{o}}-\beta-\gamma)}\]

Por último calculamos \(\overline{AB}=x\) en el triángulo \(ABC\) aplicando el teorema del coseno:

\[x^2=\overline{AC}^2+\overline{BC}^2-2\cdot\overline{AC}\cdot\overline{BC}\cdot\cos(\alpha-\beta)\]

Ejemplo

Para calcular la distancia entre dos puntos inaccesibles \(A\) y \(B\), se ha medido una base \(\overline{CD}\) de 240 metros, situada en el mismo plano que \(A\) y \(B\); también se han medido los ángulos \(\widehat{DCA}=106^{\text{o}}\), \(\widehat{DCB}=39^{\text{o}}\), \(\widehat{CDB}=122^{\text{o}}\) y \(\widehat{CDA}=41^{\text{o}}\). Calcular la distancia entre \(A\) y \(B\).

Solución

trig14

Llamemos \(x\) a la distancia entre \(A\) y \(B\). En este caso, según los datos del problema \(\alpha=106^{\text{o}}\), \(\beta=39^{\text{o}}\), \(\gamma=122^{\text{o}}\) y \(\delta=41^{\text{o}}\). Calculemos \(\overline{AC}\) y \(\overline{BC}\).

\[\overline{AC}=\frac{\overline{CD}\cdot\text{sen}\,\delta}{\text{sen}(180^{\text{o}}-\alpha-\delta)}=\frac{240\cdot\text{sen}\text{sen}41^{\text{o}}}{\text{sen}33^{\text{o}}}\approxeq289,1\]

\[\overline{BC}=\frac{\overline{CD}\cdot\text{sen}\,\gamma}{\text{sen}(180^{\text{o}}-\beta-\gamma)}=\frac{240\cdot\text{sen}122^{\text{o}}}{\text{sen}19^{\text{o}}}\approxeq325,16\]

Finalmente calculamos \(x\) aplicando el teorema del coseno en el triángulo \(ABC\):

\[x^2=\overline{AC}^2+\overline{BC}^2-2\cdot\overline{AC}\cdot\overline{BC}\cdot\cos(\alpha-\beta)=\]

\[=289.1^2+325.16^2-2\cdot289.1\cdot625.16\cdot\cos37^{\text{o}}\approxeq333167,23\Rightarrow\]

\[\Rightarrow x=\sqrt{333167,23}\Rightarrow x\approxeq577,2\]

Por tanto, la distancia entre \(A\) y \(B\) es, aproximadamente, \(577,2\) metros.

Leer más ...

Usos de la trigonometría. Cálculo de alturas y distancias (VII)

Ver artículo en formato imprimible (pdf) aquí

Altura de un objeto situado sobre un montículo, desde un terreno horizontal sin obstáculos

Deseamos calcular la altura \(\overline{AB}=x\) de un objeto situado sobre un montículo o punto elevado, desde un terreno horizontal sin obstáculos en el que estamos situados, tal y como se muestra en la figura.

trig11

Elegimos un punto \(C\) arbitrario y medimos el ángulo de elevación de \(A\), que llamaremos \(\alpha\). Moviéndonos en el plano determinado por \(A\), \(B\) y \(C\) nos desplazamos hasta un punto \(D\) y medimos \(\overline{CD}=d\), desde donde calculamos los respectivos ángulos de elevación de \(A\) y de \(B\), a los que llamaremos \(\beta\) y \(\gamma\), respectivamente.

El método a seguir consiste en calcular \(\overline{AD}\) en el triángulo \(ACD\) aplicando el teorema de los senos. Téngase en cuenta que en el triángulo \(ACD\) conocemos \(\overline{CD}=d\) y dos ángulos, \(\widehat{ACD}=\alpha\) y \(\widehat{ADC}=180^{\text{o}}-\beta\), lo que significa que también podemos calcular el tercero de los ángulos: \(\widehat{CAD}=180^{\text{o}}-(\alpha+180^{\text{o}}-\beta)=\beta-\alpha\).

\[\frac{\overline{AD}}{\text{sen}\,\widehat{ACD}}=\frac{d}{\text{sen}\,\widehat{CAD}}\Rightarrow\overline{AD}=\frac{d\cdot\text{sen}\,\alpha}{\text{sen}(\beta-\alpha)}\]

Finalmente, con el resultado anterior, se calcula \(x\) en el triángulo \(ABD\) aplicando otra vez el teorema de los senos. En este triángulo conocemos un lado, \(\overline{AD}\) y dos ángulos, \(\widehat{ADB}=\beta-\gamma\) y \(\widehat{DAB}=90^{\text{o}}-\beta\). Al igual que anteriormente esta información permite calcular el tercero de los ángulos: \(\widehat{ABD}=180^{\text{o}}-(\beta-\gamma+90^{\text{o}}-\beta)=90^{\text{o}}+\gamma\).

\[\frac{x}{\text{sen}\,\widehat{ADB}}=\frac{\overline{AD}}{\text{sen}\,\widehat{ABD}}\Rightarrow x=\frac{\overline{AD}\cdot\text{sen}(\beta-\gamma)}{\text{sen}(90^{\text{o}}+\gamma)}\]

Ejemplo

Una columna está situada sobre un peñón. Desde un punto \(C\) la parte superior de la misma se ve con un ángulo de elevación de \(55^{\text{o}}\). Situándonos en un punto \(D\), 40 metros más cerca, se constata que dicho ángulo de elevación se transforma en \(80^{\text{o}}\) y que el ángulo de elevación a la base de la columna es de \(60^{\text{o}}\). ¿Cuál es la altura de la columna?

trig12

Solución

Si nos fijamos en la figura anterior, los datos que proporciona el enunciado del problema son los siguientes. \(\alpha=55^{\text{o}}\), \(\beta=80^{\text{o}}\), \(\gamma=60^{\text{o}}\) y \(d=40\) metros. Entonces, en el triángulo \(ACD\) tenemos:

\[\overline{AD}=\frac{d\cdot\text{sen}\,\alpha}{\text{sen}(\beta-\alpha)}=\frac{40\cdot\text{sen}\,55^{\text{o}}}{\text{sen}\,25^{\text{o}}}\approxeq77,53\]

Por tanto, en el triángulo \(ABD\):

\[x=\frac{\overline{AD}\cdot\text{sen}(\beta-\gamma)}{\text{sen}(90^{\text{o}}+\gamma)}=\frac{77.53\cdot\text{sen}\,20^{\text{o}}}{\text{sen}\,150^{\text{o}}}\approxeq53,03\]

Es decir, la altura \(\overline{AB}\) de la columna es, aproximadamente, 53,03 metros.

Leer más ...

Usos de la trigonometría. Cálculo de alturas y distancias (VI)

Ver artículo en formato imprimible (pdf) aquí

Altura de un punto de pie inaccesible desde un terreno horizontal con obstáculos

Deseamos calcular la altura \(\overline{AB}=x\) de un punto de pie inaccesible desde un terreno horizontal con obstáculos, tal y como se muestra en la figura (piénsese que la figura está dibujada en perspectiva).

trig9

Tomemos una base auxiliar \(\overline{CD}=d\). Desde \(C\) medimos el ángulo de elevación de \(A\), que llamaremos \(\alpha\), el ángulo \(\widehat{ACD}\), al que llamaremos \(\beta\) y, finalmente, desde \(D\) mediremos también el ángulo \(\widehat{ADC}\), al que llamaremos \(\gamma\).

El método a seguir consiste en calcular \(\overline{AC}\) en el triángulo \(ACD\) y luego calcular \(x\) en el triángulo rectángulo \(ABC\). Aplicando el teorema de los senos en el triángulo \(ACD\):

\[\frac{\overline{AC}}{\text{sen}\,\gamma}=\frac{d}{\text{sen}\,\widehat{CAD}}\Rightarrow\overline{AC}=\frac{d\cdot\text{sen}\,\gamma}{\text{sen}\,(180^{\text{o}}-\gamma-\beta)}\]

Finalmente, en el triángulo rectángulo \(ABC\) se tiene:

\[\text{sen}\,\alpha=\frac{x}{\overline{AC}}\Rightarrow x=\overline{AC}\cdot\text{sen}\,\alpha\]

Ejemplo

Desde un barco fondeado frente a la costa se desea calcular la altura \(\overline{AB}\) de una torre. Para ello, desde la proa \(C\), a 4 metros sobre el nivel del mar, se mide el ángulo de elevación de \(A\): \(7^{\text{o}}\), y \(\widehat{ACD}=85^{\text{o}}\). Asimismo, desde la popa \(D\), también a 4 metros sobre el nivel del mar, se mide el ángulo \(\widehat{ACD}=87^{\text{o}}\) (ver figura). Si la distancia entre la proa y la popa es \(\overline{CD}=60\) metros, calcular la altura de la torre.

trig10

Solución

Llamemos \(B\,'\) al punto de la torre situado al nivel de la cubierta del barco (4 metros sobre el nivel del mar) y que se toma como referencia para medir el ángulo de elevación de \(A\): \(\alpha=7^{\text{o}}\). Llamaremos \(x=\overline{AB\,'}\), con lo que la altura de la torre será \(\overline{AB}=4+x\). Según el enunciado tenemos que \(\beta=85^{\text{o}}\), \(\gamma=87^{\text{o}}\) y \(d=60\) metros.

Tenemos pues, aplicando la fórmula vista anteriormente en el triángulo \(ACD\), que:

\[\overline{AC}=\frac{d\cdot\text{sen}\,(180\text{\grad}-\gamma-\beta)}{\text{sen}\,\gamma}=\frac{60\cdot\text{sen}\,87^{\text{o}}}{\text{sen}\,8^{\text{o}}}\approxeq430,53\]

Por tanto:

\[x=\overline{AC}\cdot\text{sen}\,\alpha=\overline{AC}\cdot\text{sen}\,7^{\text{o}}\approxeq52,47\]

Es decir, la altura de la torre es, aproximadamente, \(\overline{AB}=4+x\approxeq56,47\) metros.

Leer más ...

Usos de la trigonometría. Cálculo de alturas y distancias (V)

Ver artículo en formato imprimible (pdf) aquí

Altura de un punto de pie inaccesible desde un terreno inclinado sin obstáculos

Deseamos calcular la altura \(\overline{AB}=x\) de un punto de pie inaccesible desde un terreno inclinado, tal y como se muestra en la figura.

trig7

Sea \(\gamma\) el ángulo de inclinación del terreno. Nos situamos en un punto \(C\) y calculamos el ángulo de elevación de \(A\), que lo llamaremos \(\alpha\). Sobre el plano que contiene el triángulo \(ABC\) medimos la distancia \(\overline{CE}=d\) y desde \(E\) volvemos a calcular el ángulo de elevación de \(A\), que llamaremos \(\beta\).

El método a seguir consiste en calcular \(overline{AC}\) en el triángulo \(ACE\) y a partir de aquí calcular \(x\) en el triángulo \(ABC\). Por un lado está claro que \(\widehat{ACE}=\alpha-\gamma\), y por otro que \(\widehat{CAE}=\beta-\alpha\). Esto último está menos claro. Veamos la demostración:

\[\widehat{CAE}=\widehat{CAB}-\widehat{DAB}=(90^{\text{o}}-\alpha)-(90^{\text{o}}-\beta)=\beta-\alpha\]

Obsérvese que con estos dos ángulos también se puede calcular el ángulo \(\widehat{CAE}\):

\[\widehat{CEA}=180^{\text{o}}-\widehat{ACE}-\widehat{CAE}=180^{\text{o}}-(\alpha-\gamma)-(\beta-\alpha)=180^{\text{o}}+\gamma-\beta\]

Ahora aplicamos el teorema de los senos en el triángulo \(ACE\):

\[\frac{\overline{AC}}{\text{sen}\,\widehat{CEA}}=\frac{d}{\text{sen}\,\widehat{CAE}}\Rightarrow\overline{AC}=\frac{d\cdot\text{sen}\,(180^{\text{o}}+\gamma-\beta)}{\text{sen}\,(\beta-\alpha)}\]

Finalmente, en el triángulo \(ABC\) se tiene:

\[\text{sen}\,\alpha=\frac{x}{\overline{AC}}\Rightarrow x=\overline{AC}\cdot\text{sen}\,\alpha\]

Ejemplo

El ángulo de elevación de una peña \(\overline{AB}\) mide \(47^{\text{o}}\). Después de caminar 1000 metros hacia ella, subiendo una pendiente inclinada \(32^{\text{o}}\) respecto de la horizontal, su ángulo de elevación es de \(77^{\text{o}}\). Hallar la altura de la peña con respecto al plano horizontal de la primera observación.

Solución

trig8

Llamemos \(x=\overline{AB}\) a la altura de la peña. En este caso tenemos que \(\alpha=47^{\text{o}}\), \(\beta=77^{\text{o}}\), \(\gamma=32^{\text{o}}\) y \(d=1000\). De los datos anteriores obtenemos los necesarios para aplicar la fórmula vista anteriormente: \(\widehat{CAE}=\beta-\alpha=77^{\text{o}}-47^{\text{o}}=30^{\text{o}}\), \(\widehat{CEA}=180^{\text{o}}+\gamma-\beta=180^{\text{o}}+32^{\text{o}}-77^{\text{o}}=135^{\text{o}}\).

\[\overline{AC}=\frac{d\cdot\text{sen}\,(180^{\text{o}}+\gamma-\beta)}{\text{sen}\,(\beta-\alpha)}=\frac{1000\cdot\text{sen}\,135^{\text{o}}}{\text{sen}\,30^{\text{o}}}\approxeq1414,21\]

Por tanto:

\[x=\overline{AC}\cdot\text{sen}\,\alpha=\overline{AC}\cdot\text{sen}\,47^{\text{o}}\approxeq1034,29\]

Es decir, la altura de la peña es de, aproximadamente, 1034,29 metros.

Leer más ...

Usos de la trigonometría. Cálculo de alturas y distancias (IV)

Ver artículo en formato imprimible (pdf) aquí

Altura de un punto de pie inaccesible desde un terreno horizontal sin obstáculos

Deseamos calcular la altura \(\overline{AB}=x\) de un punto de pie inaccesible, tal y como se muestra en la figura.

Altura de un punto de pie inaccesible desde un terreno horizontal sin obstáculos

Para ello elegimos un punto \(C\) y medimos el ángulo de elevación de \(A\), que lo llamaremos \(\alpha\). Avanzamos una distancia \(\overline{CD}=d\) y desde \(D\) volvemos a medir el ángulo de elevación de \(A\), que llamaremos \(\beta\).

El método a seguir consiste en calcular \(\overline{AC}\) en el triángulo \(ACD\) y luego calcular \(x\) en el triángulo \(ACB\) (o bien calcular \(\overline{AD}\) en el triángulo \(ACD\) y a continuación \(x\) en el triángulo \(ADB\)). Obsérvese en primer lugar que conocidos \(\alpha\) y \(\beta\) se puede calcular \(\gamma\):

\[\gamma=180^{\text{o}}-(\alpha+180^{\text{o}}-\beta)=\beta-\alpha\]

Ahora aplicamos el teorema de los senos en el triángulo \(ACD\):

\[\frac{\overline{AC}}{\text{sen}\,(180^{\text{o}}-\beta)}=\frac{d}{\text{sen}\,\gamma}\Rightarrow\overline{AC}=\frac{d\cdot\text{sen}\,(180^{\text{o}}-\beta)}{\text{sen},\gamma}\]

Finalmente, en el triángulo \(ACB\) se tiene:

\[\text{sen}\,\alpha=\frac{x}{\overline{AC}}\Rightarrow x=\overline{AC}\cdot\text{sen}\,\alpha\]

De una manera análoga podemos calcular la distancia \(\overline{CB}\) si nos interesa:

\[\cos\,\alpha=\frac{\overline{CB}}{\overline{AC}}\Rightarrow \overline{CB}=\overline{AC}\cdot\cos\,\alpha\]

Ejemplo

Desde un punto a ras de suelo se ve la azotea de un edificio con un ángulo de elevación de 48º. Avanzando 20 metros en dirección al edificio, el ángulo de elevación se incrementa en 14º. Calcular la altura del edificio.

Solución

Altura de un punto de pie inaccesible desde un terreno horizontal sin obstáculos

Llamemos \(x=\overline{AB}\) a la altura del edificio. En este caso tenemos que \(\alpha=48^{\text{o}}\), \(\beta=62^{\text{o}}\), \(d=20\) y \(\gamma=\beta-\alpha=62^{\text{o}}-48^{\text{o}}=14^{\text{o}}\) Entonces, según se ha explicado anteriormente:

\[\overline{AC}=\frac{d\cdot\text{sen}\,(180^{\text{o}}-\beta)}{\text{sen}\,\gamma}=\frac{20\cdot\text{sen}\,118^{\text{o}}}{\text{sen}14^{\text{o}}}\approxeq72,994\]

Por tanto:

\[x=\overline{AC}\cdot\text{sen}\,\alpha=\overline{AC}\cdot\text{sen}\,48^{\text{o}}\approxeq54,245\]

Es decir, la altura del edificio es de, aproximadamente, 54,245 metros.

Leer más ...
Suscribirse a este canal RSS

lasmatematicas.eu

Aplicaciones

Sígueme

webs de matemáticas