Menu
¿Necesitas ayuda con las matemáticas? ¿Piensas que nunca serás capaz de entenderlas?

¿Necesitas ayuda con las matemática…

Ahora puedes tener un pro...

Completando cuadrados. Aplicación al cálculo de primitivas o integrales indefinidas

Completando cuadrados. Aplicación a…

Supongamos que me piden c...

La Universidad Europea de Madrid (UEM)

La Universidad Europea de Madrid (U…

La Universidad Europea de...

Cuadratura de un segmento de parábola

Cuadratura de un segmento de parábo…

Una forma de acercarse al...

Ejercicios de aplicaciones de las derivadas y del teorema del valor medio

Ejercicios de aplicaciones de las d…

Se proponen a continuaci&...

Aplicaciones de las derivadas. El teorema del valor medio

Aplicaciones de las derivadas. El t…

Ya hemos hablado en un pa...

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. R…

Cuando en las matem&aacut...

Series infinitas de números reales. Series convergentes

Series infinitas de números reales.…

Las sucesiones de n&uacut...

La paradoja de Zenón

La paradoja de Zenón

El filósofo griego...

Prev Next

Ejercicios de aplicaciones de las derivadas y del teorema del valor medio

Se proponen a continuación varios ejercicios relacionados con las derivadas y sus aplicaciones (por ejemplo, cálculo de extremos, monotonía, cálculo de la imagen de una función, soluciones de ciertas ecuaciones,...).

Muchos de estos ejercicios requieren la aplicación del teorema de Rolle y del teorema del valor medio.

Alguno de ellos (el número 12, por ejemplo) es de especial interés, pues haciendo uso del teorema del valor medio se pueden demostrar ciertas desigualdades muy útiles en las matemáticas en general y en el análisis matemático en particular.

Estos ejercicios son de nivel universitario, aunque alguno se podría proponer en bachillerato.

Cada uno de los ejercicios contiene la solución más o menos detallada.

Ejercicio 1

Determinar la imagen de las siguientes funciones:

a) \(f:[0,2]\rightarrow\mathbb{R}\), \(f(x)=3x^4-8x^3-6x^2+24x+1\,,\forall\,x\in[0,2]\).

b) \(f:[1,2\text{e}]\rightarrow\mathbb{R}\), \(f(x)=\frac{\ln x}{x}\,,\forall\,x\in[1,2\text{e}]\).

c) \(f:[-2,2]\cup\{3\}\rightarrow\mathbb{R}\), \(f(x)=1-\sqrt{2|x|-x^2}\,,\forall\,x\in[-2,2]\), \(f(3)=2\).

Solución.

a) La función \(f\) es continua y derivable por ser polinómica. Además \(f(0)=1\), \(f(2)=9\) y \(f'(x)=12x^3-24x^2-12x+24\). También tenemos que \(f'(x)=0\) si, y sólo si, \(x=-1\), \(x=1\) o \(x=2\). Esto es equivalente a decir que \(f'(x)\neq0\) si, y sólo si \(x\neq-1\), \(x\neq1\) y \(x\neq2\). Luego \(f\), salvo en \(x=1\), no puede alcanzar ningún extremo relativo en ningún punto del intervalo \([0,2]\). Como \(f(1)=14\) y la imagen por una función continua de un intervalo cerrado y acotado es un intervalo cerrado y acotado (propiedad de compacidad), la imagen de \(f\) es el intervalo \([1,14]\).

b) La función es continua y derivable en el intervalo \([1,2\text{e}]\) por ser cociente de derivables y no anularse nunca el denominador en dicho intervalo. Por otro lado, \(f(1)=0\) y \(f(2\text{e})=\frac{\ln2\text{e}}{2\text{e}}=\frac{\ln2+1}{2\text{e}}\cong0.31\). Además \(f'(x)=\frac{1-\ln x}{x^2}\), con lo que \(f'(x)=0\) si, y sólo si, \(1-\ln x=0\Leftrightarrow x=\text{e}\). Como \(f(\text{e})=\frac{1}{\text{e}}\cong0.368\), entonces la imagen de \(f\) es el intervalo \(\left[0,\frac{1}{\text{e}}\right]=[0,\,0.368]\).

c) Escribamos de una forma equivalente la función \(f\):

\[f(x)=\left\{\begin{array}{ccc}
                    1-\sqrt{-2x-x^2} & \text{si} & -2\leqslant x<0 \\
                    1-\sqrt{2x-x^2} & \text{si} & 0\leqslant x\leqslant 2\\
                    2 & \text{si} & x=3
                  \end{array}
    \right.\]

Claramente \(f\) es continua en \([-2,2]\). Observemos además que

\[\lim_{x\rightarrow0^+}\frac{f(x)-f(0)}{x-0}=\lim_{x\rightarrow0^+}\frac{-\sqrt{2x-x^2}}{x}= \lim_{x\rightarrow0^+}\frac{-2x+x^2}{x\sqrt{2x-x^2}}=\lim_{x\rightarrow0^+}\frac{-2+x}{\sqrt{2x-x^2}}=-\infty\]

Por tanto, \(f\) es derivable en \([-2,2]-\{0\}\).De este modo, si \(x\in[-2,2]-\{0\}\), se tiene:

\[f'(x)=\left\{\begin{array}{ccc}
                    \displaystyle \frac{x+1}{\sqrt{-2x-x^2}} & \text{si} & -2\leqslant x<0 \\
                    \displaystyle \frac{x-1}{\sqrt{2x-x^2}} & \text{si} & 0<x\leqslant 2\\
                  \end{array}
    \right.\]

Entonces \(f'(x)=0\) si, y sólo si, \(x=-1\) o \(x=1\). Por tanto, los únicos puntos en los que \(f\) puede alcanzar un extremo relativo en el intervalo \([-2,2]\) y en los que \(f\) sea además derivable son \(x=-1\) y \(x=1\). Haremos las imágenes de estos últimos, de los extremos del intervalo, de los puntos donde \(f\) no es derivable y del punto aislado \(x=3\), para decidir la imagen de \(f\).

\[f(-2)=1\ ,\ f(-1)=0\ ,\ f(0)=1\ ,\ f(1)=0\ ,\ f(2)=1\ ,\ f(3)=2\]

Por tanto, la imagen de \(f\) es \([0,1]\cup\{2\}\)

Ejercicio 2

Sean \(a\) y \(b\) números reales con \(a<b\). Dar un ejemplo de una función \(f:(a,b)\rightarrow\mathbb{R}\), no constante, que alcance un máximo relativo en todo punto de \((a,b)\).

Solución.

\[f(x)=\left\{\begin{array}{ccc}
                    1 & \text{si} &\displaystyle -a<x\leqslant\frac{a+b}{2} \\
                    2 & \text{si} &\displaystyle \frac{a+b}{2}<x<b
                  \end{array}
    \right.\]

Ejercicio 3

Demuéstrese la versión, aparentemente más general, del teorema de Rolle: sea \(f:(a,b)\rightarrow\mathbb{R}\) una función derivable en \((a,b)\) y supongamos que \(f\) tiene límites en los puntos \(a\) y \(b\) con \(\displaystyle\lim_{x\rightarrow a}f(x)=\lim_{x\rightarrow b}f(x)\). Entonces existe un punto \(c\in(a,b)\) tal que \(f'(c)=0\).

Solución.

Sea la función \(g:(a.b)\rightarrow\mathbb{R}\) definida por

\[g(x)=\left\{\begin{array}{ccc}
                    \displaystyle\lim_{x\rightarrow a}f(x) & \text{si} &x=a \\
                    f(x) & \text{si} & a<x<b\\
                    \displaystyle\lim_{x\rightarrow b}f(x) & \text{si} &x=b
                  \end{array}
    \right.\]

Es claro que \(g\) es continua en \([a,b]\) y derivable en \((a,b)\). Además, por hipótesis \(g(a)=g(b)\). Por el teorema de Rolle, existe \(c\in(a,b)\) tal que \(g'(c)=f'(c)=0\).

Ejercicio 4

Sea \(I\) un intervalo y \(f:I\rightarrow\mathbb{R}\) una función derivable en \(I\). Sean \(x\in I\), \(h\in\mathbb{R^*}\) tales que \(x+h\in I\). Probar que existe un número \(\theta\in(0,1)\) tal que \(f(x+h)-f(x)=hf'(x+\theta h)\). Póngase un ejemplo que demuestre que \(\theta\) no tiene por qué ser único. Compruébese que en los casos \(I=\mathbb{R}\), \(f(x)=x^2\,,\forall\,x\in\mathbb{R}\) y \(f(x)=\text{e}^x\,,\forall\,x\in\mathbb{R}\), ocurre que, fijados \(x\) y \(h\), el número \(\theta\) que aparece sí es único y es independiente de \(x\).

Solución.

Aplicando el teorema del valor medio al intervalo \([x,x+h]\), se tiene que existe un punto \(c\in(x,x+h)\) tal que \(f(x+h)-f(x)=f'(c)h\). Como \(c\in(x,x+h)\), entonces existe \(\theta\in(0,1)\) tal que \(c=x+\theta h\) y así \(f(x+h)-f(x)=hf'(x+\theta h)\), como queríamos.

Para probar que \smallskip\(\theta\) no tiene por qué ser único considérese la función \(f:[0,1]\rightarrow\mathbb{R}\) definida por \(f(x)=2\). Entonces \(f'(x)=0\,,\forall\,x\in[0,1]\) y por tanto dados \(x\in[0,1]\), \(h\in\mathbb{R^*}\) tales que \(x+h\in[0,1]\), es claro que \(hf'(x+\theta h)=0=f(x+h)-f(x)\,,\forall\,\theta\in(0,1)\).

Si \(I=\mathbb{R}\) y \(f(x)=x^2\), existe \(\theta\in(0,1)\) tal que \(f(x+h)-f(x)=hf'(x+\theta h)\). Pero

\[f(x+h)-f(x)=x^2+h^2+2xh-x^2=h^2+2xh\]

\[hf'(x+\theta h)=h2(x+\theta h)=2xh+2\theta h^2\]

Entonces

\[h^2+2xh=2xh+2\theta h^2\Rightarrow h^2-2\theta h^2=0\Rightarrow1-2\theta=0\Rightarrow\theta=\frac{1}{2}\]

y por tanto \(\theta\) es único.

Ahora, si \(f(x)=\text{e}^x\), entonces:

\[f(x+h)-f(x)=hf'(x+\theta h)\Leftrightarrow\text{e}^{x+h}-\text{e}^x=h\text{e}^{x+\theta h}\Leftrightarrow\text{e}^x(\text{e}^h-1)=h\text{e}^x\text{e}^{\theta h}\Leftrightarrow\]

\[\Leftrightarrow\text{e}^h-1=h\text{e}^{\theta h}\Leftrightarrow\ln(\text{e}^h-1)=\ln h+\theta h\Leftrightarrow\theta=\frac{1}{h}\ln\frac{\text{e}^h-1}{h}\]

Por tanto, \(\theta\) es único.

Ejercicio 5

Sea \(I\) un intervalo y \(f:I\rightarrow\mathbb{R}\) una función derivable en \(I\). Supongamos que existe un número real positivo \(M\) tal que \(|f'(x)|\leqslant M\,,\forall\,x\in I\). Probar que \(f\) es uniformemente continua.

Solución.

Sean \(x\,,y\in I\), y supongamos \(x<y\). Aplicando el teorema del valor medio a la restricción de \(f\) al intervalo \([x,y]\), se tiene que \(\exists\, c\in(x,y)\) tal que \(f(y)-f(x)=f'(c)(x-y)\). Por tanto, \(|f(x)-f(y)|=|f'(c)||x-y|\leqslant M|x-y|\). Entonces, dado un número real y positivo \(\varepsilon>0\) y tomando \(\delta=\frac{\varepsilon}{M}\), tenemos:

\[x\,,y\in I\,,|x-y|<\delta\Rightarrow|f(x)-f(y)|\leqslant M|x-y|<M\frac{\varepsilon}{M}=\varepsilon\]

con lo que \(f\) es uniformemente continua.

Ejercicio 6

Sea \(f:\mathbb{R^+}\rightarrow\mathbb{R}\) una función derivable en \(\mathbb{R^+}\). Supongamos que \(f\) y \(f'\) tienen límite en \(+\infty\). Probar que \(\displaystyle\lim_{x\rightarrow+\infty}f'(x)=0\).

Solución:

Sea \(x>0\) y \(n\in\mathbb{N}\). Entonces existe \(\theta\in(0,1)\) cumpliendo \(f(x+n)-f(x)=f'(x+\theta n)n\), o lo que es lo mismo, \(f'(x+\theta n)=\frac{f(x+n)-f(x)}{n}\) (ver ejercicio 4). Sea \(\{x_n\}=\{x+\theta n\}\rightarrow+\infty\). Por hipótesis \(f\) tiene límite en infinito con lo que

\[\{f'(x+\theta n)\}=\{f'(x_n)\}=\left\{\frac{f(x+n)-f(x)}{n}\right\}\rightarrow0\Rightarrow\lim_{x\rightarrow+\infty}f'(x)=0\]

tal y como queríamos demostrar.

Ejercicio 7

Sea \(f:[a,b]\rightarrow\mathbb{R}\) continua en \([a,b]\) y derivable en \((a,b)\) verificando \(f(a)=f(b)=0\). Probar que para todo real \(\lambda\) existe un punto \(c\in(a,b)\) tal que \(f'(c)=\lambda f(c)\).

Indicación: considérese la función \(g:[a,b]\rightarrow\mathbb{R}\) definida por \(g(x)=\text{e}^{-\lambda x}f(x)\,,\forall\,x\in[a,b]\).

Solución.

Apliquemos el teorema del valor medio a la función \(g\):

\[\exists\,c\in(a,b)\,:\,g(b)-g(a)=g'(c)(b-a)\]

O sea:

\[\text{e}^{-\lambda b}f(b)-\text{e}^{-\lambda a}f(a)=\left(-\lambda\text{e}^{-\lambda c}f(c)+\text{e}^{-\lambda c}f'(c)\right)(b-a)\]

Como \(f(a)=f(b)=0\), entonces:

\[-\lambda\text{e}^{-\lambda c}f(c)+\text{e}^{-\lambda c}f'(c)=0\Leftrightarrow \lambda\text{e}^{-\lambda c}f(c)=\text{e}^{-\lambda c}f'(c)\Leftrightarrow f'(c)=\lambda f(c)\]

Ejercicio 8

Sean \(a,\,b,\,c\in\mathbb{R}\) con \(a^2<3b\). Probar que la ecuación \(x^3+ax^2+bx+c=0\) tiene solución real única.

Solución.

Sea \(f:\mathbb{R}\rightarrow\mathbb{R}\) definida por \(f(x)=x^3+ax^2+bx+c\). Razonando por reducción al absurdo, si existieran \(r,\,t\in\mathbb{R}\) (\(r<t\)) tales que \(f(r)=f(t)=0\), aplicando el teorema del valor medio al intervalo \([r,t]\) tenemos que existe \(s\in(r,t)\) tal que \(f'(s)=0\), es decir, tal que \(3s^2+2as+b=0\). Y esto último ocurrirá siempre que el discriminante de la ecuación \(3x^2+2ax+b=0\) sea mayor o igual que cero: \(4a^2-12b\geqslant0\Leftrightarrow a^2\geqslant3b\), lo cual contradice que \(a^2<3b\). Por tanto la ecuación \(x^3+ax^2+bx+c=0\) tiene solución real única.

Ejercicio 9

Determinar el número de raíces de la ecuación \(3x^5+5x^3-30x=m\) según el valor del número \(m\).

Solución.

Sea \(f(x)=3x^5+5x^3-30x-m\). Entonces

\[f'(x)=15x^4+15x^2-30=15(x^4+x^2-2)=15(x-1)(x+1)(x^2+2)\]

De este modo:

\[f'(x)>0\Leftrightarrow x\in(-\infty,-1)\cup(1,+\infty)\quad;\quad f'(x)<0\Leftrightarrow x\in(-1,1)\]

Esto quiere decir que \(f\) es estrictamente creciente en \((-\infty,-1)\cup(1,+\infty)\) y estrictamente decreciente en \((-1,1)\). Por tanto, \(x=-1\) es un máximo relativo y \(x=1\) es un mínimo relativo. Como \(f(-1)=22-m\) y \(f(1)=-22-m\), y teniendo en cuenta además que \(\displaystyle\lim_{x\rightarrow-\infty}f(x)=-\infty\), \(\displaystyle\lim_{x\rightarrow+\infty}f(x)=+\infty\), pueden ocurrir las siguientes situaciones:

  • Si \(m<-22\), \(f(-1)>0\) y \(f(1)>0\), con lo que \(f\) tiene solo una raíz real situada a la izquierda de \(-1\).
  • Si \(m=-22\), \(f(-1)>0\) y \(f(1)=0\), con lo que \(f\) tiene dos raíces reales, una de ellas en \(x=1\) y otra menor que \(-1\).
  • Si \(-22<m<22\), \(f(-1)>0\) y \(f(1)<0\), con lo que \(f\) tiene tres raíces reales, una menor que \(-1\), otra situada entre \(-1\) y \(1\) y la tercera mayor que \(1\).
  • Si \(m=22\), \(f(-1)=0\) y \(f(1)<0\), con lo que \(f\) tiene dos raíces reales, una de ellas en \(x=-1\) y otra mayor que \(1\).
  • Si \(m>22\), \(f(-1)<0\) y \(f(1)<0\), con lo que \(f\) tiene solo una raíz real situada a la derecha de \(1\).

Ejercicio 10

Sea \(f:[0,1]\rightarrow\mathbb{R}\) derivable y verificando \(f(0)=0\). Supongamos que la función \(f'\) es creciente. Probar que la función \(g:(0,1]\rightarrow\mathbb{R}\) definida por \(g(x)=\frac{f(x)}{x}\,,\forall\,x\in(0,1]\) también es creciente.

Solución.

La función \(g\) es creciente en el intervalo \((0,1]\) si, y sólo si, para todo \(x\in(0,1]\):

\[\frac{xf'(x)-f(x)}{x^2}\geqslant0\Leftrightarrow xf'(x)-f(x)\geqslant0\]

Sea \(0<x\leqslant1\) y apliquemos el teorema del valor medio a la función \(f\) en el intervalo \([0,x]\). Existe pues \(c\in(0,x)\) tal que:

\[f(x)-f(0)=f'(c)(x-0)\Leftrightarrow f(x)=f'(c)x\leqslant f'(x)x\Leftrightarrow xf'(x)-f(x)\geqslant0\]

que es justo lo que queríamos demostrar (obsérvese que la penúltima desigualdad se justifica por la hipótesis de que \(f'\) es creciente).

Ejercicio 11

Sea \(f:[0,1]\rightarrow\mathbb{R}\) una función derivable, verificando que \(f(0)=0\) y \(|f'(x)|\leqslant|f(x)|\) para todo \(x\in[0,1]\). Probar que \(f(x)=0\,,\forall\,x\in[0,1]\).

Solución.

Sea \(0<x\leqslant1\). Aplicando el teorema del valor medio en el intervalo \([0,x]\) tenemos que existe \(c\in(0,x)\) tal que \(f(x)=f'(c)x\), es decir, tal que \(f'(c)=\frac{f(x)}{x}\). Como \(0<x\leqslant1\), \(|f(x)|\leqslant\frac{|f(x)|}{x}\) y entonces, para todo \(x\in(0,1]\), existe \(c\in(0,1]\) tal que \(|f(x)|\leqslant f'(c)\leqslant|f(c)|\). Por tanto, no queda más remedio que \(f(x)=0\,,\forall\,x\in[0,1]\).

Ejercicio 12

Probar las dobles desigualdades siguientes:

\[1+x\leqslant\text{e}^x\leqslant 1+x\text{e}^x\,,\forall\,x\in\mathbb{R}\quad;\quad\frac{x}{1+x}\leqslant\ln(1+x)\leqslant x\,,\forall\,x\in(-1,+\infty)\]

Solución.

Sea \(f(x)=\text{e}^x\) y \(x>0\). Aplicando el teorema del valor medio al intervalo \([0,x]\), existe \(c\in(0,x)\) tal que

\[f(x)-1=f'(c)x\Leftrightarrow \text{e}^x-1=\text{e}^cx\Leftrightarrow\text{e}^x=1+\text{e}^cx\]

Por otro lado, como \(0<c<x\), entonces, al ser la función exponencial estrictamente creciente tenemos que \(\text{e}^0<\text{e}^c<\text{e}^x\), y como \(x>0\) tenemos también que

\[x<x\text{e}^c<x\text{e}^x\Leftrightarrow 1+x<1+x\text{e}^c<1+x\text{e}^x\Leftrightarrow1+x<\text{e}^x<1+x\text{e}^x\]

tal y como queríamos demostrar. Si \(x<0\) basta aplicar el teorema del valor medio al intervalo \([x,0]\) y proceder como anteriormente. Si \(x=0\), la doble desigualdad es doble igualdad. Por tanto \(1+x\leqslant\text{e}^x\leqslant 1+x\text{e}^x\,,\forall\,x\in\mathbb{R}\).

Sea ahora \(f(x)=\ln(1+x)\) y \(x>0\). Volviendo a aplicar el teorema del valor medio al intervalo \([0,x]\), existe \(c\in(0,x)\) tal que \(\ln(1+x)=\frac{1}{1+c}x\). Pero:

\[0<c<x\Leftrightarrow1<1+c<1+x\Leftrightarrow\frac{1}{1+x}<\frac{1}{1+c}<1\Leftrightarrow\]

\[\Leftrightarrow\frac{x}{1+x}<\frac{1}{1+c}x<x\Leftrightarrow \frac{x}{1+x}<\ln(1+x)<x\]

tal y como queríamos demostrar. Si \(-1<x<0\) se aplica el teorema del valor medio al intervalo \([x,0]\). Si \(x=0\) la doble desigualdad es claramente una doble igualdad. Por tanto, \(\frac{x}{1+x}\leqslant\ln(1+x)\leqslant x\,,\forall\,x\in(-1,+\infty)\).

Ejercicio 13

robar que \(x^{\text{e}}\leqslant \text{e}^x\,,\forall\,x\in\mathbb{R^+}\).

Indicación: estudiar la función \(f:\mathbb{R^+}\rightarrow\mathbb{R}\) dada por \(f(x)=\frac{\ln x}{x}\,,\forall\,x\in\mathbb{R^+}\).

Solución.

Derivando la función dada en la indicación tenemos \(f'(x)=\frac{1-\ln x}{x^2}\). Entonces:

\[f'(x)=0\Leftrightarrow1-\ln x=0\Leftrightarrow\ln x=1\Leftrightarrow x=\text{e}\]

Por tanto, todo punto de \(\mathbb{R^+}\) distinto de \(\text{e}\) no puede ser extremo relativo. Además, por un lado:

\[f'(x)\geqslant0\Leftrightarrow1-\ln x\geqslant0\Leftrightarrow\ln x\leqslant1\Leftrightarrow x\leqslant\text{e}\]

Y, por otro lado,

\[f'(x)\leqslant0\Leftrightarrow1-\ln x\leqslant0\Leftrightarrow\ln x\geqslant1\Leftrightarrow x\geqslant\text{e}\]

Esto quiere decir que la función \(f\) alcanza un máximo relativo en el punto \(x=\text{e}\), y éste es único (será pues un máximo absoluto). Por tanto, para todo \(x\in\mathbb{R^+}\) tenemos:

\[f(x)\leqslant f(\text{e})\Leftrightarrow\frac{\ln x}{x}\leqslant\frac{1}{\text{e}}\Leftrightarrow\text{e}\ln x\leqslant x\Leftrightarrow\ln x^{\text{e}}\leqslant \ln\text{e}^x\Leftrightarrow x^{\text{e}}\leqslant\text{e}^x\]

tal y como queríamos demostrar.

Ejercicio 14

Sea \(f:[0,1]\rightarrow\mathbb{R}\) una función derivable en \(I=[0,1]\) verificando \(f(0)=f'(0)=0\) y que \(f(1)=1\). Probar que \([0,1]\subset f'(I)\).

Solución.

Como \(f'(0)=0\), entonces \(0\in f'(I)\). Aplicando el teorema del valor medio en el intervalo \([0,1]\), existe \(c\in(0,1)\) tal que

\[f(1)-f(0)=f'(c)(1-0)\Leftrightarrow f(1)=f'(c)\Leftrightarrow f'(c)=1\]

De lo anterior se deduce que también \(1\in f'(I)\). Por tanto, al ser \(f'(I)\) un intervalo (ver parte v) del teorema 3 del artículo dedicado al teorema del valor medio), todo punto comprendido entre \(0\) y \(1\) también pertenece a \(f'(I)\). Es decir, \([0,1]\subset f'(I)\).

Ejercicio 15

Sea \(f:\mathbb{R}\rightarrow\mathbb{R}\) una función derivable en \(\mathbb{R}\). Sea \(a\) un número real tal que \(f'(a)>0\) y supongamos que \(f'\) es continua en \(a\). Probar que \(f\) es estrictamente creciente en un cierto intervalo abierto de centro \(a\).

Solución.

Como \(f'\) es continua en \(a\) y \(f'(a)>0\), utilizando el lema de conservación del signo, existe un número real y positivo \(\delta\) tal que si \(x\) es cualquier punto de \(\mathbb{R}\) verificando \(|x-a|<\delta\), se tiene que \(f'(x)f'(a)>0\) (\(f'(x)\) tiene el mismo signo que \(f'(a)\)). Como \(f'(a)>0\), entonces \(f'(x)>0\,,\forall\,x\in(a-\delta,a+\delta)\), es decir, \(f\) es estrictamente creciente en un cierto intervalo abierto de centro \(a\).

Ejercicio 16

Sea \(A\) un conjunto no vacío de números reales que no tenga puntos aislados. Probar que si \(A\) no es un intervalo existe una función de \(A\) en \(\mathbb{R}\) derivable con derivada nula en todo punto de \(A\) y que no es constante.

Solución.

Si \(A\) no es un intervalo, existen \(a\,,b\in A\) con \(a<b\), de forma que \((a,b)\) no está contenido en \(A\). Luego existe \(c\in(a,b)\) tal que \(c\notin A\). Así \(A=A_1\cup A_2\), donde \(A_1=\{a\in A\,:\,a<c\}\) y \(A_2=\{a\in A\,:\,a>c\}\). Tomemos pues

\[f(x)=\left\{\begin{array}{ccc}
                    1 & \text{si} & x\in A_1 \\
                    0 & \text{si} & x\in A_2
                  \end{array}
    \right.\]

Es claro que \(f'(x)=0\,,\forall x\in A\) y \(f\) no es constante.

Ejercicio 17

Dar un ejemplo de una función \(f:\mathbb{R^*}\rightarrow\mathbb{R}\) derivable en \(\mathbb{R^*}\), con \(f'(x)\neq0\) para todo \(x\in\mathbb{R^*}\), que no sea monótona.

Solución.

Sea \(f:\mathbb{R^*}\rightarrow\mathbb{R}\) definida por \(f(x)=x^2\). Entonces \(f'(x)=2x\neq0\,,\forall x\in\mathbb{R^*}\). Además, \(f\) decrece estrictamente en \((-\infty,0)\) y crece estrictamente \((0,+\infty)\), luego no es monótona.

Referencia bibliográfica.

Aparicio C., Payá R. (1985) Análisis Matemático I (Secretariado de Publicaciones. Universidad de Granada).


Puedes descargar el artículo completo en pdf haciendo clic aquí.


Leer más ...

Aplicaciones de las derivadas. El teorema del valor medio

Ya hemos hablado en un par de artículos anteriores del concepto de derivada y de su interpretación tanto desde el punto de vista geométrico como desde el punto de vista físico. Son los siguientes:

En este artículo desarrollaremos las propiedades de las funciones derivables y se pondrá de manifiesto la importancia y utilidad del concepto de derivada.

Los resultados más destacados harán referencia a funciones derivables en un intervalo, tal y como ocurría con las funciones continuas.

Comenzaremos introduciendo el concepto de extremo relativo.

Definición.

Sea \(f:A\rightarrow \mathbb{R}\) una función real de variable real y \(a\) un punto de \(A\). Diremos que \(f\) alcanza un máximo relativo (respectivamente, mínimo relativo) en el punto \(a\) si existe un número real positivo \(\delta\) tal que el intervalo abierto \((a-\delta,a+\delta)\) está contenido en \(A\) y para todo \(x\) de dicho intervalo se tiene: \(f(x)\leqslant f(a)\) (respectivamente, \(f(x)\geqslant f(a)\)).

Diremos que \(f\) alcanza un extremo relativo en el punto \(a\) cuando \(f\) alcance un máximo relativo o un mínimo relativo en \(a\).

Al intervalo abierto del tipo \((a-\delta,a+\delta)\), centrado en el punto \(a\), se le llama también entorno del punto \(a\) y se le suele designar mediante la notación \(V_\delta(a)\).

Podríamos decir incluso que \(f\) alcanza un máximo relativo en el punto \(a\) de \(A\) si existe un cierto intervalo abierto \(I\) que contiene al punto \(a\) y tal que \(f(x)\leqslant f(a)\) para todo \(x\) situado en \(I\cap A\) (análoga definición para mínimo relativo invirtiendo la desigualdad).

Es conveniente analizar con detalle la definición anterior y, sobre todo, compararla con la noción de máximo o mínimo absoluto (que se vio en el artículo dedicado a la propiedad de compacidad para funciones continuas). La relación entre ambos conceptos se puede clarificar con el siguiente ejemplo.

Sea \(f:[0,3]\rightarrow\mathbb{R}\) definida por

\[f(x)=\left\{\begin{array}{ccc}
                x & \text{si} & 0\leqslant x\leqslant 1 \\
                2-x & \text{si} & 1<x\leqslant 2 \\
                2x-4 & \text{si} & 2<x\leqslant 3 \\
              \end{array}
\right.\]

cuya representación gráfica es

teorema valor medio 01

Es inmediato comprobar que la imagen de \(f\) es el intervalo \([0,2]\). Resulta por tanto que \(f\) alcanza su mínimo absoluto en los puntos \(0\) y \(2\). Es claro que \(f\) alcanza un mínimo relativo en \(2\), pues basta tomar \(\delta=1\) en la definición anterior; sin embargo \(f\) no alcanza un mínimo relativo en cero, pues no hay ningún intervalo abierto de centro cero contenido en \([0,3]\). Tomando también \(\delta=1\) en la definición, comprobamos fácilmente que \(f\) alcanza un máximo relativo en el punto \(1\), pero no alcanza su máximo absoluto en \(1\), ya que \(f(1)=1\neq2\). Finalmente \(f\) alcanza su máximo absoluto en \(3\), pero no alcanza un máximo relativo en \(3\).

Resumiendo, si una función \(f:A\rightarrow \mathbb{R}\) alcanza un máximo (respectivamente, mínimo) absoluto en un punto \(a\in A\), \(f\) no tiene por qué alcanzar un extremo relativo en \(a\), de hecho lo alcanza si, y solo si, existe un intervalo abierto de centro \(a\) contenido en \(A\). Además, si \(f\) alcanza un extremo relativo en \(a\), puede ocurrir que \(f\) no alcance en \(a\) ni su máximo ni su mínimo absolutos, de hecho \(f\) no tiene por qué tener máximo ni mínimo absolutos y puede incluso no estar acotada.

La siguiente proposición nos da una condición necesaria para que una función derivable en un punto alcance un extremo relativo en él.

Proposición 1.

Sea \(f:A\rightarrow \mathbb{R}\) una función real de variable real y supongamos que \(f\) alcanza un extremo relativo en un punto \(a\) de \(A\) en el que \(f\) es derivable. Entonces \(f'(a)=0\).

Sea la función \(h\) definida de la siguiente manera:

\[h(x)=\left\{\begin{array}{ccc}
                \displaystyle\frac{f(x)-f(a)}{x-a} & \text{si} & x\neq a \\
                f'(a) & \text{si} & x=a
              \end{array}
\right.\]

Como \(f\) es derivable en \(a\), entonces \(\displaystyle\lim_{x\rightarrow a}h(x)=f'(a)=h(a)\), con lo que \(h\) es continua en \(a\). Supongamos que \(h(a)>0\). Según el lema de conservación del signo, existe \(\delta>0\) tal que \(h(x)>0\) para todo \(x\) del intervalo \((a-\delta,a+\delta)\). Esto quiere decir que el numerador y el denominador de \(h(x)\) tienen el mismo signo, para todo \(x\neq a\) en ese intervalo. Dicho de otro modo, \(f(x)>f(a)\) cuando \(x>a\), y \(f(x)<f(a)\) cuando \(x<a\). Esto contradice la hipótesis de que \(f\) alcanza un extremo relativo en \(a\). Luego, la desigualdad \(h(a)>0\) es imposible. De manera similar se demuestra que tampoco puede ser \(h(a)<0\). Por consiguiente ha de ser \(h(a)=0\), o sea, \(f'(a)=0\), tal y como se quería demostrar.

Es importante notar que el hecho de que la derivada se anule en \(a\) no implica que \(f\) alcance un extremo relativo en \(a\) (la condición anterior era necesaria, pero no es suficiente). Por ejemplo, sea la función \(f(x)=x^3\). Puesto que \(f'(x)=3x^2\), tenemos que \(f'(0)=0\). Sin embargo, esta función es creciente en todo intervalo que contenga al origen, por lo que 0 no es extremo relativo.

Por poner otro ejemplo, la función \(f(x)=|x|\) demuestra que un cero de la derivada no siempre se presenta en un extremo. Aquí hay un mínimo relativo en \(0\), pero en el mismo punto \(0\) la función no es derivable (\(0\) es un punto "anguloso" y en este tipo de puntos no existe la derivada). Lo que dice la proposición anterior es que cuando la gráfica es "suave" (o lo que es lo mismo, en ausencia de puntos "angulosos"), la derivada necesariamente debe anularse en un extremo, si éste se presenta en el interior de un intervalo.

El teorema del valor medio

El teorema del valor medio para derivadas es importante en Análisis Matemático porque muchas de las propiedades de las funciones pueden deducirse fácilmente a partir de él. Antes de establecer el teorema del valor medio, examinaremos uno de los casos particulares a partir del cual puede deducirse el teorema general. Este caso particular lo descubrió Michel Rolle (1652-1719), matemático francés.

Teorema 1 (de Rolle).

Sea \(f:[a,b]\rightarrow\mathbb{R}\) una función continua en \([a,b]\) y derivable en \((a,b)\) verificando que \(f(a)=f(b)\). Entonces existe un punto \(c\) del intervalo \((a,b)\) tal que \(f'(c)=0\).

Razonando por reducción al absurdo, supongamos que \(f'(x)\neq0\) para todo \(x\) en el intervalo abierto \((a,b)\). Como \(f\) es una una función continua en \([a,b]\), la propiedad de compacidad nos asegura que \(f\) debe alcanzar su máximo absoluto \(M\) y su mínimo absoluto \(m\) en algún punto del intervalo cerrado \([a,b]\). Además, la proposición anterior nos dice que ningún extremo puede ser alcanzado en puntos interiores (de otro modo sería nula la derivada allí). Luego, ambos valores extremos son alcanzados en los extremos \(a\) y \(b\). Pero como \(f(a)=f(b)\), esto significa que \(m=M\), y por tanto \(f\) es constante en \([a,b]\). Esto contradice el hecho de que \(f'(x)\neq0\) para todo \(x\) en \((a,b)\). Resulta pues que \(f'(c)=0\) por lo menos en un punto \(c\) que satisfaga \(a<c<b\), lo que demuestra el teorema.

El significado geométrico del teorema de Rolle está representado en la figura siguiente. En este teorema se afirma tan sólo que la curva debe tener al menos una tangente horizontal en algún punto entre \(a\) y \(b\).

teorema valor medio 02

El teorema de Rolle se utiliza para demostrar el teorema del valor medio. Antes de enunciarlo, vamos a examinar su significado geométrico. Observemos la figura siguiente.

teorema valor medio 03

La curva dibujada es la gráfica de una función \(f\) continua con tangente en cada punto del intervalo \((a,b)\). En el punto \(c\) indicado, la tangente es paralela a la cuerda \(AB\). El teorema del valor medio asegura que existirá \emph{por lo menos un punto} con esta propiedad.

Para traducir al lenguaje matemático esta propiedad geométrica, tan sólo necesitamos observar que el paralelismo de dos rectas significa la igualdad de sus pendientes. Puesto que la pendiente de la cuerda es el cociente \(\frac{f(b)-f(a)}{b-a}\) y ya que la pendiente de la tangente en \(c\) es la derivada \(f'(c)\), la afirmación anterior puede expresarse así:

\[\frac{f(b)-f(a)}{b-a}=f'(c)\]

para algún \(c\) del intervalo abierto \((a,b)\).

Para hacer más intuitiva la validez de la fórmula anterior, podemos imaginar \(f(t)\) como el camino recorrido por una partícula móvil en el tiempo \(t\). Entonces el cociente del primer miembro de la fórmula representa la velocidad media en el intervalo de tiempo \([a,b]\), y la derivada \(f'(t)\) representa la velocidad instantánea en el tiempo \(t\) (ver artículo dedicado al problema de la velocidad). La igualdad afirma que debe existir un momento en que la velocidad instantánea es igual a la velocidad media. Por ejemplo, si la velocidad media de un automóvil en un viaje es de 90 km por hora, el velocímetro debe registrar 90 km por hora por lo menos una vez durante el viaje.

Teorema 2 (del valor medio).

Sea \(f:[a,b]\rightarrow\mathbb{R}\) una función continua en \([a,b]\) y derivable en \((a,b)\). Entonces existe un punto \(c\) del intervalo abierto \((a,b)\) tal que

\[f(b)-f(a)=f'(c)(b-a)\]

Sea \(g:[a,b]\rightarrow\mathbb{R}\) la función definida por

\[g(x)=(f(b)-f(a))x-(b-a)f(x)\,,\forall\,x\in[a,b]\]

Claramente \(g\) es continua en \([a,b]\) y derivable en \((a,b)\) con

\[g'(x)=(f(b)-f(a))-(b-a)f'(x)\,,\forall\,x\in(a,b)\]

Además, es fácil comprobar que \(g(a)=g(b)\). Por el teorema de Rolle existe \(c\in(a,b)\) tal que \(g'(c)=0\), esto es, tal que

\[f(b)-f(a)=f'(c)(b-a)\]

Obsérvese que el teorema anterior no concreta nada acerca de la posición exacta del "valor o valores medios" \(c\), y sólo indica que todos pertenecen al intervalo abierto \((a,b)\). Para algunas funciones se puede especificar con exactitud la posición de los valores medios, pero en la mayoría de los casos es muy difícil hacer una determinación precisa de estos puntos. Sin embargo, la utilidad real del teorema está en el hecho de que se pueden sacar muchas conclusiones del mero conocimiento de la existencia de un valor medio por lo menos.

También es importante comprobar que el teorema del valor medio puede dejar de cumplirse si hay algún punto entre \(a\) y \(b\) en el que la derivada no exista. Por ejemplo, la función \(f\) definida por la ecuación \(f(x)=|x|\) es continua en todo \(\mathbb{R}\) y tiene derivada en todos los puntos del mismo excepto en \(0\) (obsérvese en la figura siguiente que en \(0\) hay un punto anguloso y por tanto no es derivable en él).

teorema valor medio 04

La pendiente de la cuerda que une el punto \((2,f(2))\) con el punto \((-1,f(1))\) es

\[\frac{f(2)-f(-1)}{2-(-1)}=\frac{2-1}{3}=\frac{1}{3}\]

pero la derivada no es igual a \(\frac{1}{3}\) en ningún punto.

Teorema 3.

Sea \(I\) un intervalo y \(f:I\rightarrow\mathbb{R}\) una función derivable en \(I\).

i) \(f\) es creciente si, y sólo si, \(f'(a)\geqslant0\,,\forall\,a\in I\).

ii) \(f\) es decreciente si, y sólo si, \(f'(a)\leqslant0\,,\forall\,a\in I\).

iii) Si \(f'(a)=0\,,\forall\,a\in I\), entonces \(f\) es constante.

iv) Supongamos que \(f'(a)\neq0\,,\forall\,a\in I\). Entonces \(f\) es estrictamente monótona y ocurre una de las dos posibilidades siguientes:

\[f'(a)>0\,,\forall\,a\in I\quad\text{o bien}\quad f'(a)<0\,,\forall\,a\in I\]

v) El conjunto \(f'(I)=\{f'(x)\,:\,x\in I\}\) es un intervalo (teorema del valor intermedio para las derivadas).

i) Supongamos que \(f\) es creciente. Para cualesquiera \(a,x\in I\) con \(x\neq a\) se tiene

\[f_a(x)=\frac{f(x)-f(a)}{x-a}\geqslant0\]

de donde \(f'(a)\geqslant0\,,\forall\,a\in I\).

Recíprocamente, supongamos que \(f'(a)\geqslant0\,,\forall\,a\in I\) y sean \(x,y\in I\) con \(x<y\). Aplicando el teorema del valor medio a la restricción de \(f\) al intervalo \([x,y]\) tenemos

\[\exists\,a\in(x,y)\,:\,f(y)-f(x)=f'(a)(y-x)\]

con lo que \(f(x)\leqslant f(y)\) por ser \(f'(a)\geqslant0\).

ii) Basta aplicar i) a la función \(-f\).

iii) Consecuencia directa de i) y ii).

iv) Sean \(x,y\in I\) con \(x\neq y\) y supongamos que fuese \(f(x)=f(y)\). Por el teorema de Rolle existiría un punto \(a\) del intervalo abierto de extremos \(x\) e \(y\) tal que \(f'(a)=0\), lo cual es una contradicción. Así pues \(f\) es inyectiva, pero también es continua, luego es estrictamente monótona en virtud del teorema 1 del artículo dedicado al estudio de las funciones continuas e inyectivas. Finalmente, aplicando i) y ii) tenemos que, o bien \(f'(a)\geqslant0\,,\forall\,a\in I\) o bien \(f'(a)\leqslant0\,,\forall\,a\in I\) lo que, junto con \(f'(a)\neq0\,,\forall\,a\in I\), concluye la demostración.

v) Sean \(a,b\in f'(I)\) con \(a<b\) y sea \(c\in(a,b)\). Supongamos, razonando por reducción al absurdo, que \(c\notin f'(I)\). Sea \(g:I\rightarrow\mathbb{R}\) la función definida por \(g(x)=f(x)-cx\,,\forall\,x\in I\). Es claro que \(g\) es derivable en \(I\) y como \(f'(x)\neq0\,,\forall\,x\in I\), se tiene \(g'(x)\neq0\,,\forall\,x\in I\). Aplicando iv) a la función \(g\) obtenemos que, o bien \(f'(x)-c=g'(c)>0\,,\forall\,x\in I\) o bien \(f'(x)-c=g'(c)<0\,,\forall\,x\in I\). En el primer caso, al ser \(f'(x)>c\,,\forall\,x\in I\), llegaríamos a que \(a\notin f'(I)\) y, en el segundo, al ser \(f'(x)<c\,,\forall\,x\in I\), obtendríamos que \(b\notin f'(I)\). En ambos casos llegamos a una contradicción. Por tanto \(c\in f'(I)\) y hemos probado que \([a,b]\subset f'(I)\), luego \(f'(I)\) es un intervalo.

La hipótesis de que \(I\) sea un intervalo en el teorema anterior es esencial. Por ejemplo, consideremos el conjunto \(A=[0,1]\cup[2,3]\) y \(f:A\rightarrow\mathbb{R}\) la función definida por

\[f(x)=\left\{\begin{array}{ccc}
    0 & \text{si} & x\in[0,1] \\
    1 & \text{si} & x\in[2,3]
  \end{array}\right.
\]

Claramente \(f\) es derivable en \(A\) con \(f'(a)=0\,,\forall\,a\in A\); sin embargo \(f\) no es constante. No es difícil dar contraejemplos para ver que el resto de las afirmaciones del teorema son falsas si I no es un intervalo.

Hagamos notar también que la afirmación recíproca de iv) no es cierta. La función \(f:\mathbb{R}\rightarrow\mathbb{R}\) definida por \(f(x)=x^3\,,\forall\,x\in\mathbb{R}\), es estrictamente creciente y derivable en \(\mathbb{R}\) pero \(f'(0)=0\). Por tanto, si \(f\) es una función estrictamente creciente y derivable en un intervalo \(I\), sólo podemos afirmar (parte i) del teorema) que \(f'(x)\geqslant0\,,\forall\,x\in I\), pero no que \(f'(x)>0\,,\forall\,x\in I\). Semejante comentario puede hacerse de las funciones estrictamente decrecientes.

A continuación vamos a dar interesantes aplicaciones del teorema anterior. La primera es una condición suficiente para que una función alcance un extremo relativo en un punto, utilizada muy a menudo en la práctica.

Corolario 1.

Sea \(a\) un número real, \(\delta\) un número real positivo, \(I=(a-\delta,a+\delta)\) y \(f:I\rightarrow\mathbb{R}\) una función continua en \(I\) y derivable en \(I-\{a\}\). Entonces:

i) Supongamos que \(x\in I\,,x<a\Rightarrow f'(x)\geqslant0\) y que \(x\in I\,,x>a\Rightarrow f'(x)\leqslant0\). Entonces \(f\) alcanza su máximo absoluto en \(a\). Por tanto cualquier extensión de \(f\) alcanza un máximo relativo en \(a\).

ii) Supongamos que \(x\in I\,,x<a\Rightarrow f'(x)\leqslant0\) y que \(x\in I\,,x>a\Rightarrow f'(x)\geqslant0\). Entonces \(f\) alcanza su mínimo absoluto en \(a\). Por tanto cualquier extensión de \(f\) alcanza un mínimo relativo en \(a\).

i) Aplicando el teorema anterior, la restricción de \(f\) al intervalo \((a-\delta,a)\) (respectivamente, \((a,a+\delta)\)) es creciente (respectivamente, decreciente). Sea \(x\in(a-\delta,a)\) y sea la sucesión \(\{x_n\}=\{a-\frac{a-x}{n+1}\}\). Claramente \(x<x_n<a\,,\forall\,n\in\mathbb{N}\) y \(\{x_n\}\rightarrow a\), con lo que se tiene que \(f(x)\leqslant f(x_n)\,,\forall\,n\in\mathbb{N}\) y \(\{f(x_n)\}\rightarrow f(a)\) (por ser \(f\) continua en \(a\)). Así, \(f(x)\leqslant f(a)\,,\forall\,x\in(a-\delta,a)\). Razonando de manera similar, se demuestra que si \(x\in I\) y \(x>a\), entonces \(f(x)\leqslant f(a)\). En suma, \(f(x)\leqslant f(a)\,,\forall\,x\in I\), como se quería.

ii) Aplíquese i) a la función \(-f\).

La afirmación iii) del teorema anterior es de gran utilidad. Un enunciado, evidentemente equivalente, de la misma es el siguiente: si \(f,g:I\rightarrow\mathbb{R}\) son funciones derivables en el intervalo \(I\) y ser verifica que \(f'(x)=g'(x)\,,\forall x\in I\), entonces existe una constante \(C\in\mathbb{R}\) tal que \(f(x)=g(x)+C\,,\forall\,x\in I\). O sea, que el conocimiento de la función derivada de una función derivable en un intervalo determina a dicha función salvo una constante aditiva.

Una consecuencia muy interesante de lo anterior es que si la derivada de una función es ella misma, entonces dicha función es la función exponencial de base el número \(\text{e}\), más conocida simplemente por función exponencial.

Corolario 2.

Sea \(I\) un intervalo y \(f:I\rightarrow\mathbb{R}\) una función derivable en \(I\). Supongamos que existe un número real \(k\) tal que

\[f'(x)=kf(x)\,,\forall\,x\in I\]

Entonces existe un número real \(C\) tal que

\[f(x)=C\text{e}^{kx}\,,\forall\,x\in I\]

En particular, si \(I=\mathbb{R}\), \(k=1\) y suponemos \(f(0)=1\), entonces \(f\) es la función exponencial.

Sea \(g:I\rightarrow\mathbb{R}\) definida por \(g(x)=\text{e}^{-kx}f(x)\,,\forall\,x\in I\). Se tiene que \(g\) es derivable en \(I\) y que, dado \(x\in I\):

\[g'(x)=-k\text{e}^{-kx}f(x)+\text{e}^{-kx}f'(x)=-k\text{e}^{-kx}f(x)+k\text{e}^{-kx}f(x)=0\]

Por la parte iii) del teorema anterior existe \(C\in\mathbb{R}\) tal que \(g(x)=C\,,\forall x\in I\), tal y como se quería.

Ya habíamos demostrado en otro artículo el teorema de la función inversa para funciones derivables. Sin embargo volvemos a enunciarlo aquí como una consecuencia o corolario, pues la parte iv) del teorema 3 facilita, en la mayoría de los casos, la comprobación de las hipótesis del citado teorema de la función inversa.

Corolario 3 (teorema de la función inversa).

Sea \(I\) un intervalo y \(f:I\rightarrow\mathbb{R}\) una función derivable en \(I\) con \(f'(a)\neq0\,,\forall\,a\in I\). Entonces \(f\) es estrictamente monótona, \(f^{-1}\) es derivable en \(f(I)\) y

\[(f^{-1})'(f(a))=\frac{1}{f'(a)}\,,\forall\,a\in I\]

Por el apartado iv) del teorema 3, \(f\) es estrictamente monótona. Por el corolario 2 del artículo dedicado a las funciones continuas e inyectivas, \(f^{-1}\) es continua en \(f(I)\), con lo que basta aplicar el teorema de la función inversa para funciones derivables.

Para poner en práctica todo el desarrollo teórico visto en este artículo puedes visitar este otro: ejercicios de aplicaciones de las derivadas y del teorema del valor medio.

Referencias bibliográficas.

Aparicio C., Payá R. (1985) Análisis Matemático I (Secretariado de Publicaciones. Universidad de Granada).

Apostol T. M. (1990. Reimpresión digital 2015): Calculus I. Cálculo con funciones de una variable, con una introducción al álgebra lineal (Reverté Ediciones).


Puedes descargar el artículo completo en pdf haciendo clic aquí.


Leer más ...

Derivada de la función compuesta. Regla de la cadena

Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de la derivada de una función en un punto usando la definición y aprovechando el cálculo de límites. A continuación, se introducen inmediatamente las reglas de derivación: de un número por una función, de la suma y la resta, del producto y del cociente, así como la derivada de la función compuesta o regla de la cadena. También se dan las derivadas de las funciones elementales (puedes consultar este artículo), generalmente mediante una tabla de derivadas, que suele aparecer dividida en dos: la derivada de la función directamente y la derivada de la función compuesta en la que se hace uso de la regla de la cadena.

Es probable que en bachillerato también se demuestren, usando la definición de derivada de una función en un punto, algunas de las reglas de derivación (por ejemplo la derivada de la suma o del producto de dos funciones), pero lo que no se suele hacer es la demostración de la derivada de la función compuesta, conocida más habitualmente por regla de la cadena. Aprovechando que en esta Web hemos dedicado artículos a hablar sobre la composición de funciones, función inversa de una función y sobre el concepto de convergencia de una sucesión, vamos a proceder a la demostración de la regla de la cadena. Aprovecharemos también para enunciar y demostrar el teorema de la función inversa. Finalmente, y como consecuencia de lo anterior, demostraremos un resultado conocido por todos los estudiantes de matemáticas en bachillerato: de todas las funciones exponenciales, la de base el número \(\text{e}\) es la única que coincide con su función derivada. Este resultado justifica que la función exponencial de base \(\text{e}\) sea la función exponencial por excelencia. De hecho, a la función exponencial de base \(\text{e}\) se la llama, simplemente, función exponencial.

Teorema 1 (de la función compuesta o regla de la cadena)

Sean \(f:A\rightarrow\mathbb{R}\), \(f:B\rightarrow\mathbb{R}\) funciones reales de variable real verificando que \(f(A)\subset B\) y sea \(h=g\circ f\). Sea también \(a\in A\) y supongamos que \(f\) es derivable en \(a\) y que \(g\) es derivable en \(f(a)\). Entonces \(h\) es derivable en \(a\) y se verifica que

\[h'(a)=g'(f(a))f'(a)\]

Sea \(\phi:B\rightarrow\mathbb{R}\) la función definida por

\[\phi(y)=\left\{\begin{array}{ccc}
                   \displaystyle\frac{g(y)-g(f(a))}{y-f(a)} & \text{si} & y\in B-\{f(a)\} \\
                   g'(f(a)) & \text{si} & y=f(a)
                 \end{array}
\right.\]

La derivabilidad de \(g\) en \(f(a)\) hace que \(\phi\) sea continua en \(f(a)\). Se tiene además:

\[g(y)-g(f(a))=\phi(y)(y-f(a))\,,\forall\, y\in B\]

igualdad que, para \(y\neq f(a)\), se deduce de la definición de \(\phi\), mientras que, para \(y=f(a)\), es evidente por ser nulos sus dos miembros.

Dado \(x\in A\) tenemos, tomando \(y=f(x)\),

\[h(x)-h(a)=\phi(f(x))(f(x)-f(a))\]

de donde, si además es \(x\neq a\),

\[\frac{h(x)-h(a)}{x-a}=\phi(f(x))\frac{f(x)-f(a)}{x-a}\]

Por ser \(f\) continua en \(a\) y \(\phi\) continua en \(f(a)\) tenemos que \(\phi\circ f\) es continua en \(f(a)\) (ver proposición 3 del artículo dedicado a las propiedades de las funciones continuas), luego

\[\lim_{x\rightarrow a}\phi(f(x))=\phi(f(a))=g'(f(a))\]

Finalmente, como el límite del producto es el producto de los límites tenemos

\[\lim_{x\rightarrow a}\frac{h(x)-h(a)}{x-a}=\lim_{x\rightarrow a}\phi(f(x))\lim_{x\rightarrow a}\frac{f(x)-f(a)}{x-a}\Rightarrow h'(a)=g'(f(a))f'(a)\]tal y como queríamos demostrar.

El siguiente teorema nos permitirá estudiar la posible derivabilidad de la inversa de una función derivable e inyectiva.

Teorema 2 (de la función inversa)

Sea \(f:A\rightarrow\mathbb{R}\) una función real de variable real y \(a\) un punto de \(A\). Supongamos que \(f\) es inyectiva y que es derivable en el punto \(a\). Entonces las siguientes afirmaciones son equivalentes.

i) \(f'(a)\neq0\) y \(f^{-1}\) es continua en \(f(a)\).

ii) \(f^{-1}\) es derivable en \(f(a)\).

Además, en caso de que se cumplan i) y ii) se tiene:

\[(f^{-1})'(f(a))=\frac{1}{f'(a)}\]

i) \(\Rightarrow\) ii) Sea \(\{y_n\}\) una sucesión de puntos de \(f(A)-\{b\}\) con \(\{y_n\}\rightarrow f(a)\) y consideremos la sucesión \(x_n=f^{-1}(y_n)\,,\forall\,n\in\mathbb{N}\). Por ser \(f^{-1}\) continua en \(f(a)\) tenemos \(\{x_n\}\rightarrow f^{-1}(f(a))=a\), luego, por ser \(f\) derivable en \(a\):

\[\left\{\frac{f(x_n)-f(a)}{x_n-a}\right\}=\left\{\frac{y_n-f(a)}{f^{-1}(y_n)-f^{-1}(f(a))}\right\}\rightarrow f'(a)\]

Finalmente, siendo \(f'(a)\neq0\) obtenemos

\[\left\{\frac{f^{-1}(y_n)-f^{-1}(f(a))}{y_n-b}\right\}\rightarrow\frac{1}{f'(a)}\]

lo que demuestra que \(f^{-1}\) es derivable en \(f(a)\) con derivada \(\frac{1}{f'(a)}\).

ii) \(\Rightarrow\) i) Desde luego, si \(f^{-1}\) es derivable en \(f(a)\) será continua en \(f(a)\). Además, aplicando el teorema anterior con \(B=f(A)\) y \(g=f^{-1}\) tenemos: \(1=(f^{-1}\circ f)'(a)=(f^{-1})'(f(a))f'(a)\), lo que demuestra que \(f'(a)\neq0\) y nos da nuevamente la igualdad \((f^{-1})'(f(a))=\frac{1}{f'(a)}\).

Finalmente, vamos a probar la derivabilidad de las funciones exponencial y logaritmo neperiano y la de las funciones relacionadas con ellas.

Teorema 3

i) La función exponencial es derivable en todo \(\mathbb{R}\) y su función derivada es la propia función exponencial.

ii) Si \(f:A\rightarrow\mathbb{R}\) es derivable en un punto \(a\in A\), entonces la función \(g:A\rightarrow\mathbb{R}\) definida por

\[g(x)=\text{e}^{f(x)}\,,\forall\,x\in A\]

es derivable en \(a\) con \(g'(a)=f'(a)\text{e}^{f(a)}\). En particular, si \(\alpha\) es un número real positivo y tomamos \(A=\mathbb{R}\), \(f(x)=x\ln\alpha\,,\forall\,x\in\mathbb{R}^+\), obtenemos que la función exponencial de base \(\alpha\) es derivable en todo \(\mathbb{R}\) siendo su función derivada el producto del número real \(\ln\alpha\) por la propia función exponencial de base \(\alpha\).

iii) La función logaritmo neperiano es derivable en \(\mathbb{R}^+\) con

\[\ln'(x)=\frac{1}{x}\,,\forall\,x\in\mathbb{R}^+\]

iv) Si \(f:A\rightarrow\mathbb{R}^+\) es derivable en un punto \(a\in A\), la función \(g:A\rightarrow\mathbb{R}\) definida por

\[g(x)=\ln f(x)\,,\forall\,x\in A\]

es derivable en \(a\) con \(g'(a)=\frac{f'(a)}{f(a)}\) (derivada logarítmica de \(f\) en el punto \(a\)).

v) Si  \(f:A\rightarrow\mathbb{R}^+\) y \(g:A\rightarrow\mathbb{R}\) son derivables en un punto \(a\in A\), la función \(h:A\rightarrow\mathbb{R}^+\) definida por

\[h(x)=f(x)^{g(x)}\,,\forall\,x\in A\]

es derivable en \(a\) con

\[h'(a)=h(a)\left(g'(x)\ln f(a)+g(a)\frac{f'(a)}{f(a)}\right)\]

En particular, tomando \(A=\mathbb{R}^+\), \(f(x)=x\,,\forall\,x\in\mathbb{R}^+\) y \(g(x)=b\,,\forall\,x\in\mathbb{R}^+\) donde \(b\) es un número real fijo, se obtiene que la función potencia de exponente \(b\) es derivable en \(\mathbb{R}^+\) y su derivada es el producto del número real \(b\) por la función potencia de exponente \(b-1\).

i) Sea \(\{t_n\}\) una sucesión de números reales no nulos, convergente a cero. Y sean \(y_n=\frac{1}{t_n}\), \(x_n=\text{e}^{t_n}\), \(\forall\,n\in\mathbb{N}\). Claramente \(\{x_n\}\rightarrow1\) y \(\{x_n^{y_n}\}\rightarrow\text{e}\), luego tenemos \(\{y_n(x_n-1)\}\rightarrow1\) (ver el artículo dedicado a ciertos límites funcionales de interés), esto es que \(\{\frac{1}{t_n}(\text{e}^{t_n-1})\}\rightarrow1\).

Sea ahora \(a\in\mathbb{R}\) arbitrario y \(\{a_n\}\) una sucesión de números reales distintos de \(a\) tal que \(\{a_n\}\rightarrow a\). Podemos entonces aplicar lo anteriormente probado a la sucesión \(\{a_n-a\}\), sucesión de números reales no nulos que converge a cero, y obtener:

\[\left\{\frac{\text{e}^{a_n}-\text{e}^a}{a_n-a}\right\}=\left\{\text{e}^a\frac{\text{e}^{a_n-a}-1}{a_n-a}\right\}\rightarrow \text{e}^a\]

Hemos probado así que

\[f'(a)=\lim_{x\rightarrow a}\frac{\text{e}^x-\text{e}^a}{x-a}=\text{e}^a\]

y esto, cualquiera que sea el número real \(a\).

ii) Basta aplicar i) y la regla de la cadena.

iii) La función logaritmo neperiano es continua en \(\mathbb{R}^+\) y, por i), la función exponencial es derivable en \(\mathbb{R}\) con derivada distinto de cero en todo punto. Por el teorema de la función inversa tenemos, para todo número real \(a\):

\[\ln'(\text{e}^a)=\frac{1}{\text{e}^a}\]

y dado \(x\in\mathbb{R}^+\), podemos tomar \(a=\ln x\) para obtener

\[\ln'(x)=\frac{1}{x}\]

iv) Basta aplicar iii) y la regla de la cadena.

v) Sea \(\phi:A\rightarrow\mathbb{R}\) definida por

\[\phi(x)=\ln h(x)=g(x)\ln f(x)\,,\forall\,x\in A\]

Usando iv) y la regla de derivación de un producto, \(\phi\) es derivable en \(a\) con

\[\phi'(a)=g'(a)\ln f(a)+g(a)\frac{f'(a)}{f(a)}\]

Como quiera que

\[h(x)=\text{e}^{\phi(x)}\,,\forall\,x\in A\]

usando ii) obtenemos que \(h\) es derivable en \(a\) con

\[h'(a)=\text{e}^{\phi(a)}\phi'(a)=h(a)\left(g'(x)\ln f(a)+g(a)\frac{f'(a)}{f(a)}\right)\]

Ejercicios

1. Sea \(f:A\rightarrow\mathbb{R}\), \(a\in A\) y supongamos que \(f\) es derivable en \(a\) con \(f(a)\neq0\). Probar que las funciones \(|f|\,,f^+\,,f^-\,:A\rightarrow\mathbb{R}\) dadas por:

\[|f|(x)=|f(x)|\,,\ f^+(x)=\max\{f(x),0\}\,,\ f^-(x)=\max\{-f(x),0\}\,,\forall x\in A\]

son derivables en \(a\). ¿Es cierta la misma afirmación sin suponer \(f(a)\neq0\)?

La función \(|f|\) es la composición de la función \(f\) con la función valor absoluto: \(|f|=f\circ |\cdot|\). Como \(f\) es derivable en \(a\) y la función valor absoluto es derivable en \(f(a)\neq0\), la regla de la cadena nos asegura que \(|f|\) es derivable en \(a\). Si \(f(a)=0\) la afirmación no es cierta pues la función valor absoluto no es derivable en cero. Sea por ejemplo la función

\[f(x)=x^2-1\Rightarrow|f(x)|=\left\{\begin{array}{ccc}
                  x^2-1 & \text{si} & x\in(-\infty,-1]\cup[1,+\infty) \\
                  -x^2+1 & \text{si} & x\in(-1,1)
                \end{array}
  \right.\]

En el punto \(a=1\) se tiene

\[\frac{f(x)-f(1)}{x-1}=\left\{\begin{array}{ccc}
                  x+1 & \text{si} & x\in(-\infty,-1]\cup[1,+\infty) \\
                  -x-1 & \text{si} & x\in(-1,1)
                \end{array}
  \right.\]

De esta manera

\[\lim_{x\rightarrow1^+}\frac{f(x)-f(1)}{x-1}=2\quad;\quad\lim_{x\rightarrow1^-}\frac{f(x)-f(1)}{x-1}=-2\]

y por tanto \(|f|\) no es derivable en \(a=1\).

Por otro lado, se tiene que

\[f^+(x)=\max\{f(x),0\}=\frac{f(x)+|f(x)|}{2}\ ;\ f^-(x)=\max\{-f(x),0\}=\frac{-f(x)+|f(x)|}{2}\]

Entonces, por lo demostrado anteriormente, tanto \(f^+\) como \(f^-\) son derivables en \(a\in A\) con \(f(a)\neq0\). Del mismo modo que antes, esta afirmación no tiene por qué ser cierta si \(f(a)=0\).

2. Estudiar la continuidad y derivabilidad de la función \(f:A\rightarrow\mathbb{R}\) en cada uno de los siguientes casos:

a) \(A=[-1,1]\) ; \(f(x)=\sqrt{1-x^2}\,,\forall\,x\in A\).

b) \(A=\mathbb{R}\) ; \(f(x)=\sqrt[3]{|x|}\,,\forall\,x\in\mathbb{R}\).

c) \(A=\mathbb{R}\) ; \(f(x)=\frac{2x}{1+|x|}\,,\forall\,x\in\mathbb{R}\).

d) \(A=\mathbb{R}_0^+\) ; \(f(x)=x^x\,,\forall\,x\in\mathbb{R}^+\), \(f(0)=1\).

e) \(A=[0,1]\) ; \(f(x)=\max\{x,1-x\}\,,\forall\,x\in A\).

a) Sean \(g:\mathbb{R}\rightarrow\mathbb{R}\) y \(h:[0,+\infty)\rightarrow\mathbb{R}\) definidas respectivamente por \(g(x)=1-x^2\) y \(h(x)=\sqrt{x}\). \(g\) es continua y derivable en todo \(\mathbb{R}\), y \(h\) es continua en \([0,+\infty)\) y derivable en \((0,+\infty)\).

\(h\) no es derivable en cero porque

\[\lim_{x\rightarrow0}\frac{h(x)-h(0)}{x-0}=\lim_{x\rightarrow0^+}\frac{\sqrt{x}}{x}=\lim_{x\rightarrow0}\frac{1}{\sqrt{x}}=+\infty\]

Las derivadas de las funciones \(g(x)=1-x^2\) y \(h(x)=\sqrt{x}=x^{1/2}\) son, respectivamente, \(g'(x)=-2x\) y \(h'(x)=\frac{1}{2}x^{-1/2}\), donde se ha utilizado que la derivada de la función constante es igual a cero, que la derivada de la suma es la suma de las derivadas y el apartado v) del teorema 3, según el cual la derivada de la función potencia de exponente \(b\in\mathbb{R}^+\) es el producto del número real \(b\) por la función potencia de exponente \(b-1\).

Por otro lado tenemos que \((h\circ g)(x)=h(g(x))=h(1-x^2)=\sqrt{1-x^2}\), con lo que \(f=h\circ g\). Por la regla de la cadena \(f\) es derivable en \((-1,1)\), ya que si \(a\in(-1,1)\), entonces \(1-a^2\in(0,1)\) y \(f(a)=h(g(a))=h(1-a^2)\). Además, \(f\) no es derivable ni en \(x=-1\), ni en \(x=-1\) porque, tal y como hemos comprobado, no lo es \(h\) en cero y \(f(-1)=f(1)=(h\circ g)(1)=h(g(1))=h(0)\). Dado \(x\in(-1,1)\), la regla de la cadena nos proporciona la derivada de la función \(f\) en \(x\):

\[f'(x)=(h\circ g)'(x)=h'(g(x))g'(x)=\frac{1}{2}(1-x^2)^{-1/2}(-2x)=\frac{-x}{\sqrt{1-x^2}}\]

 

b) La función \(f(x)=\sqrt[3]{|x|}=|x|^{1/3}\) la podemos escribir así:

\[f(x)=\left\{\begin{array}{ccc}
                    x^{1/3} & \text{si} & x\geqslant0 \\
                    (-x)^{1/3} & \text{si} & x<0
                  \end{array}
    \right.\]

Si \(a\in\mathbb{R}^+\), \(f\) es derivable en \(a\) por el apartado 5 del teorema 3, con \(f'(a)=\frac{1}{3}a^{-2/3}\). Por la misma razón, si \(a\in\mathbb{R}^-\), \(f\) también es derivable en \(a\) con derivada \(f'(a)=-\frac{1}{3}a^{-2/3}\).

Si \(a=0\), \(f\) no es derivable en \(a\) pues tomando \(x>0\)

\[\frac{f(x)-f(0)}{x-0}=\frac{\sqrt[3]{x}}{x}=\frac{1}{\sqrt[3]{x^2}}\]

que no tiene límite finito cuando \(x\rightarrow0\).

 

c) La función la podemos escribir del siguiente modo:

\[f(x)=\left\{\begin{array}{ccc}
                    \displaystyle\frac{2x}{1+x} & \text{si} & x\geqslant0 \\
                    \displaystyle\frac{2x}{1-x} & \text{si} & x<0
                  \end{array}
    \right.\]

Esta función es claramente continua y derivable en \(\mathbb{R}-\{0\}\) con derivada

\[f'(x)=\left\{\begin{array}{ccc}
                    \displaystyle\frac{2}{(1+x)^2} & \text{si} & x>0 \\
                    \displaystyle\frac{2}{(1-x)^2} & \text{si} & x<0
                  \end{array}
    \right.\]

Veamos qué ocurre en cero.

Tomando \(x>0\):

\[\lim_{x\rightarrow0}\frac{f(x)-f(0)}{x-0}=\lim_{x\rightarrow0}\frac{\frac{2x}{1+x}}{x}=\lim_{x\rightarrow0}\frac{2}{1+x}=2\]

Tomando \(x<0\):

\[\lim_{x\rightarrow0}\frac{f(x)-f(0)}{x-0}=\lim_{x\rightarrow0}\frac{\frac{2x}{1-x}}{x}=\lim_{x\rightarrow0}\frac{2}{1-x}=2\]

Las derivadas laterales existen y son iguales. Por tanto, \(f\) es derivable en cero con \(f'(0)=2\).

 

d) Si \(a\in\mathbb{R}^+\) el apartado v) del teorema iii) nos asegura que \(f\) es derivable en \(a\) con derivada

\[f'(a)=a^a\left(\ln a+1\right)\]

Estudiemos ahora la derivabilidad de \(f\) en cero. Sea \(\phi\) la función definida de la siguiente manera:

\[\phi(x)=\left\{\begin{array}{ccc}
                    x\ln x & \text{si} & x>0 \\
                    0 & \text{si} & x=0
                  \end{array}
    \right.\]

Puesto que

\[\lim_{x\rightarrow0}\frac{\phi(x)-\phi(0)}{x-0}=\lim_{x\rightarrow0}\frac{x\ln x}{x}=\lim_{x\rightarrow0}\ln x=-\infty\]

la función \(\phi\) no es derivable en cero.

Supongamos que \(f\) fuera derivable en cero. Como \(f(x)=\text{e}^{\phi(x)}\), haciendo uso de la regla de la cadena, tendríamos que \(f'(0)=e^{\phi(0)}\phi'(0)=\phi'(0)\), lo cual es contradictorio pues \(\phi\) no es derivable en cero. Por tanto, acabamos de demostrar que \(f\) no es derivable en cero.

 

e) Observemos que \(x=1-x\Leftrightarrow x=\frac{1}{2}\), \(x<1-x\Leftrightarrow x<\frac{1}{2}\) y \(x>1-x\Leftrightarrow x>\frac{1}{2}\). Por tanto podemos escribir la función \(f(x)=\max\{x,1-x\}\) del siguiente modo:

\[f(x)=\left\{\begin{array}{ccc}
                    1-x & \text{si} & 0\leqslant x\leqslant\frac{1}{2} \\
                    x & \text{si} & \frac{1}{2}<x\leqslant1
                  \end{array}
    \right.\]

Claramente, si \(x\neq0\), \(x\neq1\) y \(x\neq\frac{1}{2}\), \(f\) es derivable con derivada

\[f'(x)=\left\{\begin{array}{ccc}
                    -1 & \text{si} & 0<x<\frac{1}{2} \\
                    1 & \text{si} & \frac{1}{2}<x<1
                  \end{array}
    \right.\]

Si \(x=0\) existe la derivada lateral por la derecha, cuyo valor es \(f'_+(0)=-1\). Análogamente, si \(x=1\) existe la derivada lateral por la izquierda y \(f'_-(1)=1\) (estos resultados se pueden obtener también con facilidad aplicando la definición de derivada lateral de una función en un punto). Finalmente, \(f\) no es derivable en \(x=\frac{1}{2}\) pues las derivadas laterales por la izquierda y por la derecha de \(\frac{1}{2}\) no coinciden: \(f'_-\left(\frac{1}{2}\right)=-1\neq1=f'_+\left(\frac{1}{2}\right)\).

3. Estudiar la continuidad y derivabilidad de la función \(f:\mathbb{R}\rightarrow\mathbb{R}\) definida por:

\[f(x)=\left\{\begin{array}{ccc}
                  x^2 & \text{si} & x\in\mathbb{Q} \\
                  x^3 & \text{si} & x\in\mathbb{R}-\mathbb{Q}
                \end{array}
  \right.\]

Sea \(a\in\mathbb{R}\) y \(\{x_n\}\) una sucesión de racionales convergente al punto \(a\). Entonces tenemos que \(\{f(x_n)\}=\{x_n^2\}\rightarrow a^2\). Sea ahora una sucesión \(\{y_n\}\) de irracionales que converja también al punto \(a\). En este caso \(\{f(y_n)\}=\{y_n^3\}\rightarrow a^3\). Para que \(f\) sea continua en \(a\) debe ser \(a^2=a^3\), es decir, \(a=0\) o \(a=1\). Si \(a=0\Rightarrow\{f(x_n)\}\rightarrow0=f(0)\), sea quien sea la sucesión \(\{x_n\}\). Si \(a=1\Rightarrow\{f(x_n)\}\rightarrow1=f(1)\). Entonces \(f\) es continua en \(0\) y en \(1\). En los demás puntos no es continua y, por tanto, tampoco es derivable.

Estudiemos la derivabilidad en el punto \(a=0\). En este caso

\[\frac{f(x)-f(0)}{x-0}=\left\{\begin{array}{ccc}
                                   x & \text{si} & x\in\mathbb{Q} \\
                                   x^2 & \text{si} & x\in\mathbb{R}-\mathbb{Q}
                                 \end{array}
  \right.\]

Entonces es claro que \(\displaystyle\lim_{x\rightarrow0}\frac{f(x)-f(0)}{x-0}=0\), con lo que \(f\) es derivable en \(0\) y \(f'(0)=0\).

Veamos ahora qué ocurre en \(a=1\).

\[\frac{f(x)-f(1)}{x-1}=\left\{\begin{array}{ccc}
                                   x+1 & \text{si} & x\in\mathbb{Q} \\
                                   x^2+x+1 & \text{si} & x\in\mathbb{R}-\mathbb{Q}
                                 \end{array}
  \right.\]

En este caso \(\displaystyle\frac{f(x)-f(1)}{x-1}\) no tiene límite en \(1\), pues si \(x\rightarrow1\) por racionales \(\displaystyle\frac{f(x)-f(1)}{x-1}\rightarrow2\) y si \(x\rightarrow1\) por irracionales \(\displaystyle\frac{f(x)-f(1)}{x-1}\rightarrow3\). Por tanto, \(f\) no es derivable en \(a=1\).

4. Probar que la función \(f:\mathbb{R}\rightarrow\mathbb{R}\) definida por:

\[f(x)=\left\{\begin{array}{ccc}
                  x & \text{si} & x\in\mathbb{R}_0^- \\
                  \ln(1+x) & \text{si} & x\in\mathbb{R}^+
                \end{array}
  \right.\]

es derivable en \(\mathbb{R}\) y encontrar su función derivada.

La función es claramente continua y derivable en \(\mathbb{R}-\{0\}\), con

\[f'(x)=\left\{\begin{array}{ccc}
                                   1 & \text{si} & x<0 \\
                                   \frac{1}{1+x} & \text{si} & x>0
                                 \end{array}
  \right.\]

Como \(\displaystyle\lim_{x\rightarrow0^+}f(x)=\lim_{x\rightarrow0^-}f(x)=0\), entonces \(\displaystyle\lim_{x\rightarrow0}f(x)=0=f(0)\), \(f\) es continua en \(0\).

Además:

\[\lim_{x\rightarrow0^-}\frac{f(x)-f(0)}{x-0}=1\ ;\ \lim_{x\rightarrow0^+}\frac{f(x)-f(0)}{x-0}=\lim_{x\rightarrow0^+}\frac{\ln(1+x)}{x}=1\]

Para demostrar que este último límite es igual a \(1\), demostraremos que \(\displaystyle\lim_{x\rightarrow0^+}(1+x)^{1/x}=\text{e}\). Sea \(y=\frac{1}{x}\). Entonces, \(x\rightarrow0^+\Rightarrow y\rightarrow+\infty\) y tenemos:

\[\lim_{x\rightarrow0^+}(1+x)^{1/x}=\lim_{y\rightarrow+\infty}\left(1+\frac{1}{y}\right)^y=\text{e}\]

Y de aquí, por la continuidad de la función logaritmo neperiano, se deduce que

\[\lim_{x\rightarrow0^+}\ln(1+x)^{1/x}=\lim_{x\rightarrow0^+}\frac{1}{x}\ln(1+x)=\lim_{x\rightarrow0^+}\frac{\ln(1+x)}{x}=\ln\text{e}=1\]

Por tanto, hemos demostrado que

\[\lim_{x\rightarrow0^-}\frac{f(x)-f(0)}{x-0}=\lim_{x\rightarrow0^+}\frac{f(x)-f(0)}{x-0}=1\]

Así, \(f\) es derivable en cero con \(f'(0)=1\).

5. Estudiar la continuidad y derivabilidad de la función \(f:\mathbb{R}\rightarrow\mathbb{R}\) definida por:

\[f(x)=\left\{\begin{array}{ccc}
                  x^p\ln|x| & \text{si} & x\in\mathbb{R}-\{0\} \\
                  0 & \text{si} & x=0
                \end{array}
  \right.\]

donde \(p\) es un número entero.

La función es continua y derivable en \(\mathbb{R}-\{0\}\) y tenemos que

\[f'(x)=\left\{\begin{array}{ccc}
                                   x^{p-1}(p+\ln x) & \text{si} & x>0 \\
                                   x^{p-1}(p-\ln(-x)) & \text{si} & x<0
                                 \end{array}
  \right.\]

Como \(|x^p\ln|x||\leqslant|x^{p+1}|\), entonces \(\forall\,\varepsilon>0\,,\exists\,\delta>0\,:\,x\in\mathbb{R}\,,\,0<|x|<\delta\Rightarrow|f(x)|<\varepsilon\). Basta tomar \(\delta=\sqrt[p+1]{\varepsilon}\). Entonces

\[\lim_{x\rightarrow0}f(x)=\lim_{x\rightarrow0}\left(x^p\ln|x|\right)=0=f(0)\]

y, por tanto, \(f\) es continua en cero.

Usando lo demostrado anteriormente tenemos también

\[\lim_{x\rightarrow0}\frac{f(x)-f(0)}{x-0}=\lim_{x\rightarrow0}\frac{x^p\ln|x|}{x}=\lim_{x\rightarrow0}\left(x^{p-1}\ln|x|\right)=0\]

lo que demuestra que \(f\) es derivable en \(0\) con \(f'(0)=0\).

6. Sea \(f:\mathbb{R}\rightarrow\mathbb{R}\) definida por \(f(x)=x+\text{e}^x\,,\forall\,x\in\mathbb{R}\). Probar que \(f\) es biyectiva y que \(f^{-1}\) es derivable en todo \(\mathbb{R}\). Calcular \((f^{-1})'(1)\) y \((f^{-1})'(1+\text{e})\).

La función \(f\) es continua y derivable en todo \(\mathbb{R}\) por ser suma de continuas y derivables. Por otro lado, \(f(x)\rightarrow-\infty\) cuando \(x\rightarrow-\infty\) y \(f(x)\rightarrow+\infty\) cuando \(x\rightarrow+\infty\), lo que demuestra que \(f(\mathbb{R})=\mathbb{R}\) y \(f\) es sobreyectiva. Además, \(f\) es estrictamente creciente pues si \(x<y\), entonces \(x+\text{e}^x<y+\text{e}^y\) (la función exponencial es estrictamente creciente). Así, \(f\) es inyectiva y, por tanto, \(f^{-1}\) es continua (ver el artículo dedicado a las funciones continuas e inyectivas).

La derivada de la función \(f\) es \(f'(x)=1+\text{e}^x\neq0\,,\forall\,x\in\mathbb{R}\). Por el teorema de la función inversa \(f^{-1}\) es derivable en todo \(\mathbb{R}\) y se tiene que \((f^{-1})'(f(a))=\frac{1}{f'(a)}\). Así:

\(f(a)=1\Leftrightarrow a+\text{e}^a=1\Leftrightarrow a=0\) y entonces \((f^{-1})'(1)=\frac{1}{f'(0)}=\frac{1}{2}\).

\(f(a)=1+\text{e}\Leftrightarrow a+\text{e}^a\Leftrightarrow1+\text{e}\Leftrightarrow a=1\) y entonces \((f^{-1})'(1+\text{e})=\frac{1}{f'(1)}=\frac{1}{1+\text{e}}\).

Referencia bibliográfica. Aparicio C., Payá R. (1985) Análisis Matemático I (Secretariado de Publicaciones. Universidad de Granada).


Puedes descargar el artículo completo en pdf haciendo clic aquí.


Leer más ...

El problema de la velocidad. Derivada de una función. Ejemplos de derivadas

Un problema relativo a velocidad

Sea un proyectil lanzado verticalmente desde el suelo a una velocidad de \(45\) metros por segundo. Prescindiendo del rozamiento, se supone que solamente actúa la gravedad, por lo que el proyectil se mueve en línea recta. Sea \(f(t)\) la altura en metros que alcanza el proyectil \(t\) segundos después del lanzamiento. Si la fuerza de la gravedad no actuara en él, el proyectil continuaría subiendo a velocidad constante, recorriendo una distancia de \(45\) metros cada segundo, y en el tiempo \(t\) se tendría \(f(t)=45t\). Pero a causa de la gravedad, el proyectil va retardándose hasta que su velocidad llega a valer cero, y a partir de ese momento cae al suelo. Experiencias físicas indican que mientras el proyectil está en movimiento su altura \(f(t)\) viene dada aproximadamente por la fórmula

\[f(t)=45t-5t^2\qquad(1)\]

El término \(-5t^2\) es debido a la influencia de la gravedad. Obsérvese que \(f(t)=0\) cuando \(t=0\) y \(t=9\); o sea, que el proyectil regresa a la tierra después de \(9\) segundos, por lo que la fórmula anterior sólo es válida para \(0\leqslant t\leqslant9\).

El problema a considerar es el siguiente: Determinar la velocidad del proyectil en cada instante de su movimiento. Para poder comprender este problema, hay que precisar lo que se entiende por velocidad en cada instante. Para ello, se introduce la noción de velocidad media durante un intervalo de tiempo, es decir, desde el instante \(t\) al \(t+h\), definiéndola como el cociente:

\[\frac{\text{diferencia de distancias en el intervalo de tiempo}}{\text{intervalo de tiempo}}=\frac{f(t+h)-f(t)}{h}\]

Este cociente, llamado cociente incremental, es un número que se puede calcular siempre que \(t\) y \(t+h\) pertenezcan ambos al intervalo \([0,9]\). El número \(h\) puede ser positivo o negativo, pero no cero. Se dejará fijo \(t\) y se estudiará lo que le ocurre al cociente incremental, cuando se dan a \(h\) valores cada vez menores en valor absoluto.

Por ejemplo, considérese el instante \(t=2\). La distancia recorrida después de \(2\) segundo es:

\[f(2)=90-20=70\]

En el tiempo \(t=2+h\) la distancia recorrida es:

\[f(2+h)=45(2+h)-5(2+h)^2=70+25h-5h^2\]

Por tanto, la velocidad media en el intervalo entre \(t=2\) y \(t=2+h\) es

\[\frac{f(2+h)-f(2)}{h}=\frac{25h-5h^2}{h}=25-5h\]

Tomando valores de \(h\) cada vez más pequeños en valor absoluto, esta velocidad media se acerca más y más a \(25\). Por ejemplo, si \(h=0,1\) la velocidad media es \(24,5\); si \(h=0,001\), es \(24,995\); si \(h=0,00001\), se obtiene el valor \(24,99995\), y cuando \(h=-0,00001\) se obtiene \(25,00005\). Lo importante es que se puede obtener la velocidad media tan próxima a \(25\) como se desee, si más que tomar \(|h|\) suficientemente pequeño. Se describe este hecho diciendo que la velocidad media tiende al límite \(25\) cuando \(h\) tiende a cero. Parece natural llamar al valor de este límite la velocidad instantánea en el instante \(t=2\).

Los mismos cálculos se pueden efectuar para cualquier otro instante. La velocidad media en un intervalo arbitrario entre \(t\) y \(t+h\) está dado por el cociente:

\[\frac{f(t+h)-f(t)}{h}=\frac{(45(t+h)-5(t+h)^2)-(45t-5t^2)}{h}=45-10t-5h\]

Cuando \(h\) tiende a cero, la expresión de la derecha tiende al límite \(45-10t\) que define la velocidad instantánea en el instante \(t\). Designando la velocidad instantánea por \(v(t)\) se tiene

\[v(t)=45-10t\qquad(2)\]

La fórmula \((1)\) del espacio \(f(t)\), define una función \(f\) que indica la altura a que se encuentra el proyectil en cada instante de su movimiento; \(f\) se denomina función posición o ley de espacios. Su dominio es el intervalo cerrado \([0,9]\) y su gráfica es la siguiente:

grafica espacio 01

La fórmula \((2)\) de la velocidad \(v(t)\) define una nueva función \(v\) que indica la rapidez con que se mueve el proyectil en cada instante de su movimiento, se denomina función velocidad y su gráfica la tienes a continuación.

grafica velocidad 01

Obsérvese que, al crecer \(t\) de \(0\) a \(9\), \(v(t)\) decrece constantemente de \(v(0)=45\) a \(v(9)=-45\). Para hallar el instante \(t\) en el cual \(v(t)=0\) se resuelve la ecuación \(45-10t=0\) obteniéndose \(t=\frac{9}{2}\). Por tanto, en el punto central del movimiento la influencia de la gravedad reduce la velocidad a cero y el proyectil queda instantáneamente fijo. La altura en este instante es \(f(\frac{9}{2})=101,25\). Si \(t>\frac{9}{2}\), la velocidad es negativa y la altura decrece.

El proceso por el cual se obtiene \(v(t)\) a partir del cociente incremental se denomina "hallar el límite cuando \(h\) tiende a cero", y se expresa simbólicamente como sigue:

\[v(t)=\lim_{h\rightarrow0}\frac{f(t+h)-f(t)}{h}\qquad(3)\]

Esta expresión usada para definir la velocidad, en el ejemplo anterior, tiene un sentido más amplio y permite definir la velocidad en movimientos a lo largo de una línea recta, cuando se conozca la función de posición \(f\), y siempre que el cociente incremental tienda a un límite cuando \(h\) tiende a cero.

Derivada de una función

El ejemplo expuesto en el apartado anterior señala el camino para introducir el concepto de derivada. Sea \(f\) una función definida por lo menos en un intervalo abierto \((a,b)\) del eje \(X\). Se elige un punto \(x\) en este intervalo y se forma el cociente de diferencias

\[\frac{f(x+h)-f(x)}{h}\]

donde el número \(h\) puede ser positivo o negativo (pero no cero), y tal que \(x+h\) pertenezca también a \((a,b)\). El numerador de este cociente mide la variación de la función cuando \(x\) varía de \(x\) a \(x+h\). El cociente representa la variación media de \(f\) en el intervalo que une \(x\) a \(x+h\).

Seguidamente se hace tender \(h\) a cero y se estudia lo que le ocurre a ese cociente. Si tiende hacia un cierto valor como límite (y será el mismo, tanto si \(h\) tiende a cero con valores positivos como negativos), entonces ese límite se denomina derivada de \(f\) en \(x\) y se indica por el símbolo \(f'(x)\). Por tanto, la definición formal de \(f'(x)\) puede establecerse del siguiente modo.

Definición de derivada.

La derivada \(f'(x)\) está definida por la igualdad

\[f'(x)=\frac{f(x+h)-f(x)}{h}\qquad(4)\]

con tal que el límite exista. El número \(f'(x)\) también se denomina coeficiente de variación de \(f\) en \(x\).

Comparando la igualdad \((4)\) con la igualdad \((3)\) se ve que el concepto de velocidad instantánea es simplemente un ejemplo del concepto de derivada. La velocidad \(v(t)\) es igual a la derivada \(f'(t)\) cuando \(f\) es la ley de espacios; lo que frecuentemente se expresa diciendo que la velocidad es la relación entre la variación del espacio y la del tiempo. Ya hemos visto en el apartado anterior que la ley de espacios está dada por la ecuación \(f(t)=45t-t^2\), y su derivada \(f'\) es una nueva función (velocidad) dada por \(f'(t)=45-10t\).

En general, el proceso de paso al límite por el que se obtiene \(f'(x)\) a partir de \(f(x)\), abre un camino para obtener una nueva función \(f'\) a partir de una función dada \(f\). Este proceso se denomina derivación, y \(f'\) es la primera derivada de \(f\). Si \(f'\) a su vez está definida en un intervalo abierto, se puede también calcular su primera derivada, indicada por \(f''\) y que es la segunda derivada de \(f\). Análogamente, la derivada \(n\)-sima de \(f\), que se indica por \(f^{(n)}\), se define como la derivada primera de \(f^{(n-1)}\). Convendremos en que \(f^{(0)}=f\), esto es, la derivada de orden cero es la misma función.

En el caso del movimiento rectilíneo, la primera derivada de la velocidad (segunda derivada del espacio) se denomina aceleración. Por ejemplo, para calcular la aceleración en el ejemplo del apartado anterior, se puede utilizar la ecuación \((2)\) para formar el cociente de diferencias

\[\frac{v(t+h)-v(t)}{h}=\frac{(45-10(t+h))-(45-10t)}{h}=\frac{-10h}{h}=-10\]

Como este cociente no varía al tender \(h\) a \(0\), se puede considerar que tiende a \(-10\) (puesto que es \(-10\) cuando \(h\) está próximo a \(0\)). Se concluye pues que la aceleración en este problema es constante e igual a \(-10\), lo que indica que la velocidad decrece a una razón de \(10\) metros por segundo cada segundo. En \(9\) segundos el decrecimiento total de la velocidad es \(9\cdot10=90\) metros por segundo, que está de acuerdo con el hecho de que durante los \(9\) segundos de movimiento la velocidad cambie de \(v(0)=45\) a \(v(9)=-45\).

Ejemplos de derivadas

EJEMPLO 1. Derivada de la función constante. Supongamos que \(f\) es una función constante: sea por ejemplo \(f(x)=k\), para todo \(x\). El cociente de diferencias es

\[\frac{f(x+h)-f(x)}{h}=\frac{c-c}{h}=0\]

Puesto que el cociente es \(0\) para todo \(x\), su límite cuando \(h\) tiende a cero, \(f'(x)\), es también \(0\) para todo \(x\). Dicho de otro modo, una función constante tiene derivada nula para todo \(x\).

EJEMPLO 2. Derivada de la función lineal. Sea \(f\) una función lineal, por ejemplo \(f(x)=mx+n\) para todo real \(x\). Si \(h\neq0\), tenemos

\[\frac{f(x+h)-f(x)}{h}=\frac{m(x+h)+b-(mx+b)}{h}=\frac{mh}{h}=m\]

Como que el cociente de diferencias no cambia cuando \(h\) tiende a \(0\), resulta que \(f'(x)=m\), para cada \(x\). Así que, la derivada de una función lineal es una función constante.

EJEMPLO 3. Derivada de una función potencial de exponente entero positivo. Consideremos el caso \(f(x)=x^n\), siendo \(n\) un entero positivo. El cociente de diferencias es ahora

\[\frac{f(x+h)-f(x)}{h}=\frac{(x+h)^n-x^n}{h}\]

En álgebra elemental se tiene la igualdad (¡compruébese!)

\[a^n-b^n=(a-b)\left(b^{n-1}+ab^{n-2}+a^2b^{n-3}+\ldots+a^{n-2}b+a^{n-1}\right)\]

Es conveniente observar que el segundo paréntesis del segundo miembro tiene \(n\) sumandos. Si en la igualdad anterior se toma \(a=x+h\) y \(b=x\), la identidad se transforma en:

\[(x+h)^n-x^n=h\left(x^{n-1}+(x+h)x^{n-2}+(x+h)^2x^{n-3}+\ldots+(x+h)^{n-2}x+(x+h)^{n-1}\right)\]

Si dividimos entre \(h\) los dos miembros de la igualdad tenemos:

\[\frac{(x+h)^n-x^n}{h}=x^{n-1}+(x+h)x^{n-2}+(x+h)^2x^{n-3}+\ldots+(x+h)^{n-2}x+(x+h)^{n-1}\]

Insistimos en que en la suma del segundo miembro hay \(n\) términos. Cuando \(h\) tiende a \(0\) tenemos:

\[\lim_{h\rightarrow0}\frac{(x+h)^n-x^n}{h}=\lim_{h\rightarrow0}\left(x^{n-1}+(x+h)x^{n-2}+(x+h)^2x^{n-3}+\ldots+(x+h)^{n-2}x+(x+h)^{n-1}\right)=\]

\[=x^{n-1}+x\cdot x^{n-2}+x^2\cdot x^{n-3}+\ldots+x^{n-2}\cdot x+x^{n-1}=x^{n-1}+x^{n-1}+x^{n-1}+\ldots n\text{ veces}\ldots+x^{n-1}\]

Por tanto, la suma de los últimos \(n\) términos es \(nx^{n-1}\). En definitiva: \(f'(x)=nx^{n-1}\), para todo \(x\).

EJEMPLO 4. Derivada de la función seno. Sea \(f(x)=\text{sen}\,x\). El cociente de diferencias es

\[\frac{f(x+h)-f(x)}{h}=\frac{\text{sen}(x+h)-\text{sen}\,x}{h}\]

Para transformarlo de modo que haga posible calcular el límite cuando \(h\rightarrow0\), utilizamos la identidad trigonométrica

\[\text{sen}\,A-\text{sen}\,B=2\,\text{sen}\frac{A-B}{2}\cos\frac{A+B}{2}\]

Poniendo \(A=x+h\) y \(B=x\) tenemos

\[\frac{\text{sen}(x+h)-\text{sen}\,x}{h}=\frac{2\,\text{sen}\frac{h}{2}\cos\frac{2x+h}{2}}{h}=\frac{\text{sen}\frac{h}{2}}{\frac{h}{2}}\cos\left(x+\frac{h}{2}\right)\]

Cuando \(h\rightarrow0\), el factor \(\cos\left(x+\frac{h}{2}\right)\rightarrow\cos x\) por la continuidad del coseno. Asimismo, el siguiente límite

\[\lim_{x\rightarrow0}\frac{\text{sen}\,x}{x}=1\]

(ver gráfica de la función \(\frac{\text{sen}\,x}{x}\), la cual tienes a continuación), demuestra que

\[\lim_{h\rightarrow0}\frac{\text{sen}\frac{h}{2}}{\frac{h}{2}}=1\]

grafica senx partido x

Por lo tanto el cociente de diferencias tiene como límite \(\cos x\) cuando \(h\rightarrow0\). Dicho de otro modo, \(f'(x)=\cos x\) para todo \(x\), es decir, la derivada de la función seno es el coseno.

EJEMPLO 5. Derivada de la función coseno. Sea \(f(x)=\cos x\). Demostraremos que \(f'(x)=-\text{sen}\,x\), esto es, que la derivada de la función coseno es menos la función seno. Hemos de partir ahora de la identidad trigonométrica siguiente:

\[\cos A-\cos B=-2\,\text{sen}\frac{A-B}{2}\text{sen}\frac{A+B}{2}\]

Pongamos \(A=x+h\) y \(B=x\). De manera similar a como se ha procedido en el ejemplo anterior, esto nos conduce a la fórmula

\[\frac{\cos(x+h)-\cos x}{h}=-\frac{2\,\text{sen}\frac{h}{2}\text{sen}\frac{2x+h}{2}}{h}=-\frac{\text{sen}\frac{h}{2}}{\frac{h}{2}}\text{sen}\left(x+\frac{h}{2}\right)\]

La continuidad de la función seno demuestra que \(\text{sen}(x+\frac{h}{2})\rightarrow\text{sen}\,x\) cuando \(h\rightarrow0\). Además, recordemos que \(\displaystyle\lim_{x\rightarrow0}\frac{\text{sen}\,x}{x}=1\). Por tanto \(f'(x)=-\text{sen}\,x\).

EJEMPLO 6. Derivada de la función raíz n-sima. Si \(n\) es un entero positivo, sea \(f(x)=x^{1/n}\) para \(x>0\). El cociente de diferencias para \(f\) es

\[\frac{f(x+h)-f(x)}{h}=\frac{(x+h)^{1/n}-x^{1/n}}{h}\]

Pongamos \(u=(x+h)^{1/n}\) y \(v=x^{1/n}\). Tenemos entonces \(u^n=x+h\) y \(v^n=x\), con lo que \(h=u^n-v^n\), y el cociente de diferencias toma la forma (ver ejemplo 3)

\[\frac{f(x+h)-f(x)}{h}=\frac{u-v}{u^n-v^n}=\frac{1}{u^{n-1}+u^{n-2}v+\ldots+uv^{n-2}+v^{n-1}}\]

La continuidad de la función raíz \(n\)-sima prueba que \(u\rightarrow v\) cuando \(h\rightarrow0\). Por consiguiente, cada término del denominador del miembro de la derecha tiene límite \(v^{n-1}\) cuando \(h\rightarrow0\). En total hay \(n\) términos, con lo que el cociente de diferencias tiene como límite \(\frac{1}{nv^{n-1}}=\frac{v^{1-n}}{n}\). Puesto que \(v=x^{1/n}\), esto demuestra que

\[f'(x)=\frac{x^{(1/n)(1-n)}}{n}=\frac{1}{n}x^{1/n-1}\]

EJEMPLO 7. Continuidad de las funciones que admiten derivadas. Si una función \(f\) tiene derivada en un punto \(x\), es también continua en \(x\). Para demostrarlo, empleamos la identidad

\[f(x+h)=f(x)+h\left(\frac{f(x+h)-f(x)}{h}\right)\]

que es válida para \(h\neq0\). Si hacemos que \(h\rightarrow0\), el cociente de diferencias del segundo miembro tiende a \(f'(x)\) y, puesto que este cociente está multiplicado por un factor que tiende hacia \(0\), el segundo término del segundo miembro tiende a \(0\). Esto demuestra que \(f(x+h)\rightarrow f(x)\) cuando \(h\rightarrow0\), y por tanto que \(f\) es continua en \(x\) (obsérvese que esto es lo mismo que decir, haciendo un adecuado cambio de variable, que \(f(x)\rightarrow f(a)\) cuando \(x\rightarrow a\)).

Este último ejemplo proporciona un nuevo procedimiento para probar la continuidad de las funciones. Cada vez que establecemos la existencia de una derivada \(f'(x)\), establecemos también, al mismo tiempo, la continuidad de \(f\) en \(x\). Debería observarse, no obstante, que el recíproco no es cierto. La continuidad en \(x\) no implica necesariamente la existencia de la derivada \(f'(x)\). Por ejemplo, cuando \(f(x)=|x|\), el punto \(x=0\) es de continuidad de \(f\) (ya que \(f(x)\rightarrow f(0)=0\) cuando \(x\rightarrow0\)), pero no existe derivada en \(0\). El cociente de diferencias \(\frac{f(0+h)-f(0)}{h}\) es igual a \(\frac{|h|}{h}\). Éste vale \(1\) si \(h>0\) y \(-1\) si \(h<0\), y por consiguiente no tiene límite cuando \(h\rightarrow0\).

grafica valor absoluto

Referencia bibliográfica. Apostol T. M. (1990. Reimpresión digital 2015): Calculus I. Cálculo con funciones de una variable, con una introducción al álgebra lineal (Reverté Ediciones).


Puedes descargar el artículo completo en pdf haciendo clic aquí.


Leer más ...

Problemas de optimización. Optimización en economía

Muchos problemas requieren buscar un valor que haga mínima o máxima una cantidad. Esta cantidad puede venir dada en una fórmula, en otras ocasiones deberemos plantear nosotros la fórmula. En este artículo puedes ver con detalle de qué tratan este tipo de problemas.

En todo caso recordaremos algunas pautas para resolver problemas de optimización.

  1. Leer el problema hasta comprenderlo. Localizar la cantidad se ha de hacer máxima o mínima, es decir, aquella cantidad que tenemos que optimizar.
  2. Si procede, realizar algún dibujo de la situación que muestre como se relacionan los elementos que varían. Escoger nombres a las variables de interés. Si hay varias variables involucradas, estudiar cómo se relacionan. Hay que plantear una ecuación donde se hagan patentes las relaciones entre las variables. Esta ecuación se suele llamar de ligadura (porque establece la relación entre las variables) o ecuación de restricción.
  3. Expresar la cantidad que se quiere optimizar como función de una de las variables. Esta función se conoce con el nombre de función objetivo. Si hay dos o más variables, despejar las variables en términos de una sola, usando la ecuación de ligadura (o restricción) y sustituirla en la función objetivo. Determinar el dominio de la función resultante de acuerdo a la naturaleza del problema.
  4. Determinar los máximos o mínimos de la función a optimizar. Hay que garantizar que el extremo sea absoluto.
  5. Por último, es conveniente responder con palabras cada pregunta del problema.

Para el cálculo de los extremos (máximos y mínimos) de una función recomendamos la lectura de estos apuntes sobre derivadas.

Optimización en economía

Hay una gran variedad de problemas en administración y economía donde se emplea la derivada para encontrar máximos y mínimos. En particular, a una empresa le interesa el nivel de producción donde se alcanza la máxima utilidad o el máximo ingreso; o a un empresario le interesaría saber el nivel de producción al que el coste promedio por unidad es mínimo. Veamos algunos ejercicios que nos sirvan de ejemplo.

Ejercicio 1

El coste total de producir \(q\) unidades de un artículo está dado por

\[c(q)=5000+4q+\frac{1}{2}q^2\]

¿Cuántas unidades deberán producirse a fin de obtener el mínimo coste promedio por unidad? ¿Cuál es ese mínimo coste promedio?

 

En primer lugar hemos de obtener el coste promedio, que se calcula dividiendo el coste total entre el número de unidades \(q\):

\[\overline{c}(q)=\frac{5000+4q+\frac{1}{2}q^2}{q}=\frac{5000}{q}+4+\frac{1}{2}q\]

Derivando \(\overline{c}\) tenemos:

\[\overline{c}'(q)=-\frac{5000}{q^2}+\frac{1}{2}\]

Igualamos la derivada a cero para encontrar los posibles máximos o mínimos (valores críticos):

\[-\frac{5000}{q^2}+\frac{1}{2}=0\Leftrightarrow-10000+q^2=0\Leftrightarrow\begin{cases}q=100\\q=-100\end{cases}\]

Eliminamos la solución negativa pues carece de sentido.

Para saber qué clase de punto es \(q=100\) volvemos a derivar la función coste promedio y evaluamos precisamente en \(q=100\):

\[\overline{c}''(q)=\frac{10000}{q^3}\Rightarrow\overline{c}''(100)=\frac{10000}{100^3}>0\]

De lo anterior se deduce que en \(q=100\) se alcanza un mínimo relativo, con lo que podemos concluir que cuando se producen 100 unidades tendremos el coste promedio mínimo.

Además, el mínimo coste promedio es:

\[\overline{c}(100)=\frac{c(100)}{100}=\frac{5000+4\cdot100+(100)^2/2}{100}=\frac{5000+400+5000}{100}=104\ \text{um}\]

Ejercicio 2

El coste total de producir \(q\) unidades de un artículo está dado por

\[c(q)=1000+300q+\frac{1}{20}q^2\]

Si la ecuación de demanda está dada por \(p=400-0,1q\), ¿Cuántas unidades deberán producirse a fin de obtener la máxima utilidad? ¿Cuál es el precio en que se tiene la máxima utilidad? ¿Cuál es la utilidad máxima posible? Si el gobierno impone un impuesto de 10 euros por unidad, ¿cuál es el nuevo nivel de producción que maximiza la utilidad?

 

En primer lugar se debe conseguir la función utilidad \(U=I-C\) (ingresos menos costes). En este caso, como \(I=pq=(400-0,1q)q=400q-0,1q^2\), tenemos:

\[U(q)=(400q-0,1q^2)-\left(1000+300q-\frac{1}{20}q^2\right)=400q-0,1q^2-1000-300q-\frac{1}{20}q^2\Rightarrow\]

\[\Rightarrow U(q)=-\frac{3}{20}q^2+100q-1000\]

Derivando e igualando a cero tenemos:

\[U'(q)=-\frac{6}{20}q+100=0\Rightarrow q=\frac{1000}{3}\]

Tenemos pues un único punto crítico (posible máximo o mínimo). Volviendo a derivar:

\[U''(q)=-\frac{6}{20}\]

Como \(U''(q)\) es siempre negativa, se tiene que \(q=\dfrac{1000}{3}\) es un máximo relativo y por existir un único extremo, este es absoluto (podíamos haber hecho esto teniendo en cuenta que la función \(U\) es una parábola que se abre "hacia abajo" y que, por tanto, el vértice es su único máximo absoluto).

Sustituyendo en la ecuación de demanda obtenemos el precio de venta máximo:

\[p=400-0,1\frac{1000}{3}=\frac{1100}{3}\approx367\ \text{UM}\]

Y ahora conseguimos el valor máximo de la función de utilidad:

\[U\left(\frac{1000}{3}\right)=-\frac{3}{20}\left(\frac{1000}{3}\right)^2+100\frac{1000}{3}-100\approx16567\ \text{UM}\]

Ejercicio 3

Un gimnasio tiene la cuota mensual en 100 euros. A ese precio se inscriben mensualmente un promedio de 550 clientes. Se quiere subir los precios y se estima que por cada aumento de 2 euros se pierden 5 clientes ¿Qué precio se deberá fijar a fin de que el gimnasio obtenga el máximo ingreso?

Leer más ...

3. El teorema fundamental del cálculo

En el artículo anterior hemos visto que el concepto de integral definida de una función \(f\) en un intervalo \([a,\,b]\), \(\int_a^b f(x)dx\), viene a representar el área comprendida entre la curva (gráfica de \(f\)), el eje \(X\) y las rectas verticales \(x=a\) y \(x=b\), tal y como se representa en la siguiente figura.

th fdtal calculo 01

Existe una estrecha relación entre la integral definida o, lo que es lo mismo, el cálculo del área bajo la curva, y la derivación. Esto, en principio, es bastante sorprendente. El teorema fundamental del cálculo pone de manifiesto la relación mencionada. Antes de enunciarlo demostraremos un resultado de interés, el teorema del valor medio para integrales. También introduciremos el concepto de función área de una función \(f\) en un intervalo cerrado.

Teorema del valor medio para integrales

Si \(f(x)\) es continua en \([a,\,b]\), entonces existe un punto \(c\in(a,\,b)\) tal que

\[\int_a^b f(x)dx=f(c)\cdot(b-a)\]

Demostración:

Sean \(m\) y \(M\) el mínimo y el máximo de \(f(x)\) en \([a,\,b]\). Entonces

\[m(b-a)\leq\int_a^b f(x)dx\leq M(b-a)\]

th fdtal calculo 03

Es decir:

\[m\leq\frac{1}{b-a}\int_a^b f(x)dx\leq M\]

Sean \(x_1\), \(x_2\) los puntos de \([a,\,b]\) tales que \(f(x_1)=m\), \(f(x_2)=M\). Entonces la igualdad anterior también se puede escribir así:

\[f(x_1)\leq\frac{1}{b-a}\int_a^b f(x)dx\leq f(x_2)\]

Aplicando el teorema de los valores intermedios existirá un punto \(c\in(x_1,\,x_2)\) tal que

\[f(c)=\frac{1}{b-a}\int_a^b f(x)dx\]

O lo que es lo mismo, hemos demostrado que existe \(c\in(a,\,b)\) tal que

\[\int_a^b f(x)dx=f(c)\cdot(b-a)\]

como queríamos demostrar.

El teorema del valor medio para integrales puede interpretarse geométricamente de la siguiente manera: existe un punto \(c\in(a,\,b)\) tal que el rectángulo de base \(b-a\) y altura \(f(c)\) tienen la misma área que la encerrada por la curva \(f\), el eje \(X\) y las rectas \(x=a\), \(x=b\).

th fdtal calculo 02

La función área

Dada una función \(f\), continua en un intervalo \([a,\,b]\), podemos calcular \(\int_a^c f\) para todo número \(c\in[a,\,b]\). Podemos entonces considerar una nueva función:

\[F(x)=\int_a^x f\, ,\ \forall\,x\in[a,\,b]\]

La función anterior es el área encerrada bajo la gráfica de \(f\) entre \(a\) y un punto variable \(x\).

Cuanto mayor sea la ordenada de \(f\), más rápidamente crece el área bajo ella, \(F\), y por tanto, mayor es \(F'\). Cuando \(f\) es negativa, lo es el área. Por tanto, \(F\) decrece y su derivada es negativa. Estas consideraciones intuitivas entre las funciones \(f\) y \(F'\) quedan patentes con mayor precisión en el siguiente teorema.

Teorema fundamental del cálculo

Si \(f\) es una función continua en \([a,\,b]\), entonces la función \(\displaystyle F(x)=\int_a^x f\), \(x\in[a,\,b]\), es derivable y se verifica que \(F'(x)=f(x)\).

Demostración:

Para hallar \(F'(x)\) calcularemos

\[\lim_{h\to0}\frac{F(x+h)-F(x)}{h}\]

El numerador es

\[F(x+h)-F(x)=\int_a^{x+h}f-\int_a^x f=\int_a^{x+h}f-\left(-\int_x^a f\right)=\int_x^a f+\int_a^{x+h}f=\int_x^{x+h}f\]

th fdtal calculo 04

Por el teorema del valor medio para integrales, al ser \(f\) continua en \([x,\,x+h]\), existe \(c\in[x,\,x+h]\) tal que

\[\int_x^{x+h}f=f(c)\cdot(x+h-x)=f(c)\cdot h\]

Por tanto:

\[F'(x)=\lim_{h\to0}\frac{F(x+h)-F(x)}{h}=\lim_{h\to0}\left[\frac{1}{h}\int_x^{x+h}f\right]=\lim_{h\to0}\left[\frac{1}{h}f(c)\cdot h\right]=\lim_{h\to0}f(c)\]

Como \(c\in[x,\,x+h]\), el límite \(\displaystyle\lim_{h\to0}f(c)=f(x)\), pues \(f\) es continua.

Por tanto, \(F'(x)=f(x)\), que es lo queríamos demostrar.

Veamos algunos ejemplos del uso del teorema fundamental del cálculo

Ejemplo 1

Podemos aplicar el teorema fundamental del cálculo para calcular la derivada de la función \(F(x)=\int_1^x(\ln t-2)dt\). Puesto que la función \(f(t)=\ln t-2\) es continua en todo su dominio, se tiene que \(F'(x)=\ln x-2\). Por otro lado, como \(F'(x)=0\Rightarrow\ln x-2=0\Rightarrow x=e^2\) y, además, \(F''(e^2)>0\), la función \(F\) tiene en el punto \(x=e^2\) un mínimo. Obsérvese que gracias al teorema fundamental del cálculo hemos obtenido el mínimo de la función sin necesidad de resolver la integral.

Ejemplo 2

Supongamos que queremos calcular el área encerrada por la gráfica de la función seno entre \(0\) y \(\pi\). Es decir, queremos hallar \(\int_0^\pi \text{sen}\,x\,dx\). Para ello llamaremos \(F(x)=\int_a^x\text{sen}\,t\,dt\)

th fdtal calculo 05

Por el teorema fundamental del cálculo, \(F'(x)=\text{sen}\,x\). Por tanto, al ser \(F\) una primitiva de la función seno:

\[F(x)=\int \text{sen}\,x\,dx=-\cos x+C\]

Como \(F(0)=\int_0^0\text{sen}\,t\,dt=0\), entonces \(-\cos0+C=0\), es decir, \(C=\cos0=1\). Por tanto tenemos que \(F(x)=-\cos x+1\). De este modo, el área que queremos calcular es:

\[\int_0^\pi\text{sen}\,x\,dx=F(\pi)=-\cos\pi+1=-(-1)+1=2\]

Por tanto el área que se buscaba es de \(2\ \text{u}^2\).

En el artículo siguiente veremos otro método (el que se usa habitualmente) para el cálculo de áreas: la regla de Barrow.

Finalmente reseñar que el teorema fundamental del cálculo afirma que la función área bajo la gráfica de \(f\), \(F(x)=\int_a^x f\), es una primitiva de \(f(x)\), ya que \(F'(x)=f(x)\). Esta es la razón por la que al cálculo de primitivas se le llama integración o cálculo de integrales, y se utiliza la expresión \(\int f(x)dx\) para designar una primitiva de la función \(f(x)\).

Obsérvese en la siguiente figura la relación entre \(F\) y \(f\) (haz clic sobre la figura para ver el movimiento):

En este ejemplo la gráfica de color rojo es \(f(x)=(x-3)^3+3(x-3)^2\) en el intervalo \([1,\,4]\). De manera similar a como se ha hecho en el ejemplo anterior, se puede comprobar con facilidad que \(F(x)=\dfrac{(x-3)^4}{4}+(x-3)^3+4\) (la gráfica de color azul). La ordenada de esta última función (el punto de color azul) nos da el área encerrada por la gráfica de \(f\), el eje \(X\) y las rectas verticales que pasan por las abscisas \(1\) y \(x\) (en color verde).


← 2. Integral definida

4. La regla de Barrow →

Leer más ...

Optimización de funciones. Problemas de optimización

Es muy frecuente que en un problema de geometría o de las ciencias experimentales (física, química, biología, etc.), de la economía, la psicología y de las ciencias sociales en general, se trate de optimizar un modelo. Es decir, si el modelo se ajusta a una función matemática, se trata de calcular cuándo esa función alcanza un máximo o un mínimo.

Sirva como ejemplo hacer máximo un volumen, minimizar un área, maximizar los beneficios con un mímimo coste, etcétera.

Para atacar este tipo de problemas es fundamental encontrar la función que hemos de maximizar o minimizar, o lo que es lo mismo, dar con la expresión analítica que se ajuste a nuestro modelo. De lo demás se encargan las derivadas.

Por eso, para ir adquierendo confianza con este tipo de problemas tendremos que tener en cuenta dos cosas importantes.

1) Ejercitarnos en expresar analíticamente funciones que se describen mediante un enunciado. En el caso más sencillo tendremos que interpretar el enunciado adecuadamente para conseguir una función que involucre una sola variable. Variable que será aquella "cosa" que queramos hacer máxima o mínima. Lo normal es que aparezcan dos "cosas" que varían (dos variables). Lo que tenemos que conseguir es expresar una de las variables en función de la otra a partir de los datos que ofrezca el enunciado del problema.

2) Aprender la técnica de hallar, de la forma más eficaz posible, los extremos de una función que viene dada mediante su expresión analítica.

Cálculo de los extremos de una función \(f(x)\) en un intervalo \([a,b]\)

En los problemas de optimización nos interesa el cálculo de los extremos absolutos de una función que cumple determinadas condiciones en un intervalo \([a,b]\).

Para ello se sigue el siguiente proceso.

a) Los máximos y mínimos absolutos de una función \(f(x)\) definida y derivable en un intervalo \([a,b]\) están entre los puntos críticos o singulares de esa función y los correspondientes a los extremos del intervalo. Por eso lo que hacemos es resolver la ecuación \(f'(x)=0\), seleccionamos las soluciones que están entre los extremos \(a\) y \(b\) y con todos estos valores (incluidos \(a\) y \(b\)) vemos cuál es el máximo y cuál el mínimo. Para ello, entre los candidatos a extremos relativos, lo mejor es utilizar el criterio de la segunda derivada.

b) Si hay algún punto de \([a,b]\) en el que la función no sea derivable aunque sí continua, calcularemos además el valor de \(f\) en ese punto, pues podría ser un máximo o un mínimo absoluto.

c) Si \(f\) no es continua en algún punto de \([a,b]\) estudiaremos el comportamiento de la función en las cercanías de ese punto (límites por la izquierda y por la derecha del punto en cuestión).

Algunos ejemplos de problemas de optimización

Problema 1

Se dispone de \(6\) metros cuadrados de cartón para construir una caja con forma de prisma recto de base cuadrada con tapa. ¿Qué dimensiones debe tener la caja para que el volumen encerrado sea máximo?

optimizacion 01

La función que se quiere maximizar es el volumen. Las variables que se piden son las dimensiones, esto es, el lado de la base \(b\) y la altura del prisma \(h\).

El volumen \(V\) de un prisma recto es \(V=b^2\cdot h\).

La relación entre \(b\) y \(h\) nos la proporciona el enunciado el dproblema. Se dispone de \(6\ \text{m}^2\) para construir la base, las caras laterales y la tapa, es decir:

\[2b^2+4bh=6\Rightarrow h=\frac{6-2b^2}{4b}\quad(1)\]

Sustituyendo la expresión anterior en la fórmula del volumen tenemos:

\[V=b^2\cdot\frac{6-2b^2}{4b}=\frac{1}{4}b(6-2b^2)=\frac{1}{4}(6b-2b^3)\]

Hemos conseguido expresar el volumen (que es la variable que queremos maximizar) en función de la base. Ahora derivamos, igualamos a cero y hallamos los posibles extremos relativos:

\[V'=\frac{1}{4}(6-6b^2)=0\Rightarrow 6b^2=6\Rightarrow b^2=1\Rightarrow\begin{cases}b=1\\b=-1\end{cases}\]

Evidentemente la solución negativa no tiene sentido. Además, para \(b=1\) se tiene que \(h=1\) (basta sustituir \(b\) en la expresión \(1\)).

Como \(V''=-3b\), entonces \(V''(1)=-3<0\), con lo que \(b=1\) es un máximo. Por tanto, para \(b=1\) y \(h=1\) se alcanza el volumen máximo (que además es de \(1\) metro cúbico).

Obsérvese que la solución corresponde a un cubo de lado \(1\) metro. En muchos problemas geométricos la solución óptima es la solución que se corresponde con la figura más regular.

Problema 2

Determina cómo dividir un segmento de \(90\) cm en dos trozos, de forma que la suma del área del semicírculo cuyo diámetro es uno de ellos y el área de un triángulo rectángulo que tiene como base el otro trozo y cuya altura es \(\pi\) veces su base, sea mínima.

Nota: Recuerda que el área de un círculo de radio \(r\) es \(\pi r^2\).

La solución aquí.

A continuación se proponen un par de problemas de optimización cuya dificultad es mayor que la de los anteriores. Se tendrá mucho ganado si la situación mencionada en el enunciado se representa mediante un buen dibujo, donde todos los datos estén adecuadamente detallados.

Problema 3

Sea \(AB\) un diámetro de una circunferencia de radio unidad, \(BD\) la tangente en \(B\), \(P\) un punto de la circunferencia, \(PD\) perpendicular a \(BD\) y \(AP\) una cuerda. Determinar \(P=(x,\,y)\) para que el área del trapecio rectángulo \(ABPD\) sea máxima.

La solución aquí. 

Problema 4

Dadas dos esferas de radios \(r\) y \(r′\) tales que la distancia entre sus centros es \(d\), se sitúa un punto luminoso en la línea de sus centros. ¿En qué posición habrá que situarlo para que la suma de las superficies iluminadas en ambas esferas sea máxima?

La solución aquí.

Os dejo, en los enlaces de más abajo, algunos problemas más de optimización completamente resueltos. Las relaciones son documentos en formato PDF que andan por Internet. El autor de la primera de ellas es José María Martínez Mediano. Desconozco los autores de las otras dos. En todo caso muchas gracias a todos ellos por compartir este material.

Puedes encontrar mucho más material escribiendo en cualquier buscardor las palabras "problemas optimización pdf".

Leer más ...

El teorema de Rolle. El teorema del valor medio

Comencemos recordando que, por definición, una función \(f\) alcanza un máximo relativo (respectivamente, un mínimo relativo) en un punto \(a\) si, y solo si, existe un entorno de \(a\), \((a-\delta,\,a+\delta)\), tal que para todo \(x\) de dicho entorno se tiene \(f(x)\leqslant f(a)\) (respectivamente, \(f(x)\geqslant f(a)\)).

Diremos que \(f\) alcanza un extremo relativo en el punto \(a\) cuando \(f\) alcance un máximo relativo o un mínimo relativo en \(a\).

Un resultado de gran importancia es la condición necesaria de máximo o mínimo relativo en funciones derivables.

Si \(f(x)\) es derivable en \(a\) y tiene un máximo o un mínimo relativo en él, entonces \(f'(a)=0\).

Teorema de Rolle

Antes de enunciar el teorema de Rolle vamos a reflexionar sobre su interpretación geométrica. La idea es la siguiente. Tenemos la gráfica de una función cuyo "dibujo" se puede hacer sin levantar el lápiz del papel (continua) y de manera suave, sin picos o "puntos angulosos" (derivable) y, además, toma los mismos valores en los extremos de un intervalo (o sea, empezamos y terminamos el dibujo de la gráfica a la misma altura). Entonces, sea como sea el dibujo, tiene que haber al menos un punto del interior del intervalo en el que la recta tangente en el mismo es horizontal. Esto se comprende mejor observando la siguiente figura.

Rolle ValorMedio 01

Teorema de Rolle

Sea \(f:[a,\,b]\rightarrow\mathbb{R}\) una función continua en \([a,\,b]\) y derivable en \((a,\,b)\) verificando que \(f(a)=f(b)\). Entonces existe un punto \(c\) del intervalo \((a,\,b)\) tal que \(f'(c)=0\).

Según el teorema de Weierstrass sobre la continuidad de funciones (lo puedes encontrar en el artículo dedicado al teorema de Bolzano), existen dos puntos de \([a,\,b]\) tales que la función alcanza respectivamente su máximo \(M\) y mínimo \(m\) absolutos.

Distinguiremos dos casos.

Si estos puntos son los extremos del intervalo, entonces \(f(a)=f(b)=m=M\), luego la función es constante en todos los puntos de \([a,\,b]\), por lo que \(f'(c)=0\) en cualquier punto de \((a,\,b)\).

Si \(f\) alcanza el máximo o el mínimo absoluto en un punto \(c\) del interior del intervalo (distinto de los extremos), tenemos que dicho máximo o mínimo absoluto también será máximo o mínimo relativo, con lo que por la condición necesaria de máximo o mínimo relativo vista más arriba, tenemos que \(f'(c)=0\)

Hay que tener presente que, si en el teorema de Rolle suprimimos alguna de las hipótesis, no podemos asegurar que el teorema se cumpla. Asi, en las tres funciones siguientes tenemos que la primera no es continua en \([a,\,b]\), aunque es derivable en \((a,\,b)\) y \(f(a)=f(b)\). La segunda no es derivable en \((a,\,b)\), aunque es continua en \([a,\,b]\) y \(f(a)=f(b)\). La tercera es continua en \([a,\,b]\) y derivable en \((a,\,b)\), aunque \(f(a)\neq f(b)\). En ninguna de ellas hay un punto \(c\in(a,\,b)\) tal que \(f'(c)=0\).

Rolle ValorMedio 03

Teorema del valor medio

El teorema del valor medio también se conoce con el nombre de teorema del valor medio de Lagrange o teorema de los incrementos finitos.

Al igual que hemos hecho anteriormente, nos aproximaremos al teorema del valor medio mediante su interpretación geométrica. La idea consiste en que una curva continua y sin picos que va de \(A\) hasta \(B\) tendrá algún punto intermedio en el que su recta tangente sea paralela al segmento \(\overline{AB}\). También se comprende mejor si observamos la siguiente figura.

Rolle ValorMedio 02

Teorema del valor medio

Sea \(f:[a,\,b]\rightarrow\mathbb{R}\) una función continua en \([a,\,b]\) y derivable en \((a,\,b)\). Entonces existe un punto \(c\) del intervalo abierto \((a,\,b)\) tal que \(f(b)-f(a)=f'(c)(b-a)\).

Sea \(f:[a,\,b]\rightarrow\mathbb{R}\) la función definida por:

\[g(x)=(f(b)-f(a))x-(b-a)f(x)\,,\,\forall x\in[a,\,b]\]

Claramente \(g\) es continua en \([a,\,b]\) y derivable en \((a,\,b)\) con

\[g'(x)=(f(b)-f(a))-(b-a)f'(x)\,,\,\forall x\in(a,\,b)\]

Además, es fácil comprobar que \(g(a)=g(b)\). Por el teorema de Rolle existe un \(c\in(a,\,b)\) tal que \(g'(c)=0\), esto es, tal que

\[f(b)-f(a)=f'(c)(b-a)\]

Fijémonos otra vez en la figura anterior. Supongamos que la recta que pasa por \(A=(a,\,f(a))\) y \(B=(b,\,f(b))\) es \(y=mx+n\). Entonces, precisamente por pasar por los puntos \(A\) y \(B\) tenemos que

\[\begin{cases}f(b)=mb+n\\f(a)=ma+n\end{cases}\Rightarrow f(b)-f(a)=mb-ma\Rightarrow\]

\[\Rightarrow f(b)-f(a)=m(b-a)\Rightarrow m=\frac{f(b)-f(a)}{b-a}\]

O sea, que la pendiente de la recta que pasa por los puntos \(A\) y \(B\) es \(\dfrac{f(b)-f(a)}{b-a}\). Pero el teorema del valor medio afirma que existe \(c\in(a,\,b)\) tal que \(f(b)-f(a)=f'(c)(b-a)\), o sea, tal que \(f'(c)=\dfrac{f(b)-f(a)}{b-a}\). Lo que viene a decir que la pendiente de la recta tangente en un punto intermedio es igual que la pendiente de la recta que pasa por los puntos \(A\) y \(B\), es decir, que ambas son paralelas.

Leer más ...

Derivación de funciones en forma implícita

Hay relaciones entre variables cuya expresión analítica no es de la forma \(y=f(x)\). Es decir, la variable dependiente \(y\) no aparece despejada o de forma explícita. Por ejemplo, las ecuaciones de las cónicas relacionan de forma implícita sus variables. Se dice que la función está dada de forma implícita mediante una relación de la forma

\[f(x,y)=0\]

En muchos de estos casos es difícil o muy laborioso aislar o despejar la variable dependiente \(y\) en función de la independiente \(x\). Pero podemos realizar la derivada de la función tal y como está escrita en forma implícita, aplicando la regla de la cadena, y teniendo en cuenta que derivamos respecto de la variable independiente, que en nuestro caso es \(x\).

Veamos un par de ejemplos.

Ejemplo 1

Se desea calcular la recta tangente a la circunferencia \(x^2+y^2-6y-16=0\) en los puntos de abscisa \(x=3\).

Es evidente que despejar \(y\) no es fácil. Por tanto derivamos en forma implícita la ecuación, con lo que tenemos que

\[2x+2yy'-6y'-0=0\Rightarrow2x+(2y-6)y'=0\Rightarrow y'=\frac{-2x}{2y-6}=\frac{-x}{y-3}\]

Para \(x=3\), tenemos que \(9+y^2-6y-16=0\), es decir, para averiguar las ordenadas de los puntos hemos de resolver la ecuación de segundo grado anterior, cuyas soluciones son \(y=-1\), \(y=7\), por lo que los puntos en los que debemos calcular la tangente son \((3,\,-1)\) y \((3,\,7)\).

Sabemos que la ecuación de la recta tangente en un punto \((a,\,f(a))\) es \(y-f(a)=f'(a)(x-a)\). En el punto \((3,\,-1)\) tenemos que \(y'=\dfrac{-3}{-1-3}=\dfrac{3}{4}\), con lo que la recta tagente en este punto será

\[y-(-1)=\frac{3}{4}(x-3)\Rightarrow y=\frac{3}{4}x-\frac{13}{4}\]

En el punto \((3,\,7)\) tenemos que \(y'=\dfrac{-3}{7-3}=\dfrac{-3}{4}\), y en este punto la recta tangente será

\[y-7=-\frac{3}{4}(x-3)\Rightarrow y=-\frac{3}{4}x+\frac{37}{4}\]

En la figura siguiente puedes ver la circunferencia y la dos rectas tangentes en los punto \((3,\,-1)\) y \((3,\,7)\).

derivacion implicita 01

Ejemplo 2

Vamos a calcular ahora la ecuación de la recta tangente a la curva

\[\text{sen}(x^2y)-y^2+x=2-\frac{\pi^2}{16}\]

en el punto de \(\left(2,\,\dfrac{\pi}{4}\right)\)

Es fácil comprobar que la curva pasa por el punto \(\left(2,\,\dfrac{\pi}{4}\right)\) porque

\[\text{sen}\left(2^2\frac{\pi}{4}\right)-\left(\frac{\pi}{4}\right)^2+2=\text{sen}\,\pi-\frac{\pi^2}{16}+2=2-\frac{\pi^2}{16}\]

Derivemos implícitamente:

\[\cos(x^2y)(2xy+x^2y')-2yy'+1=0\]

Sustituyendo \(x=2\) e \(y=\dfrac{\pi}{4}\), en la expresión anterior tenemos:

\[(\pi+4y')\cos\pi-\frac{\pi}{2}y'+1=0\Rightarrow-\pi-4y'-\frac{\pi}{2}y'+1=0\Rightarrow\]

\[\Rightarrow-2\pi-8y'-\pi y'+2=0\Rightarrow(8+\pi)y'=2-2\pi\Rightarrow y'=\frac{2-2\pi}{8+\pi}\]

Por tanto la recta tangente en el punto \(\left(2,\,\dfrac{\pi}{4}\right)\)es

\[y-\frac{\pi}{4}=\frac{2-2\pi}{8+\pi}(x-2)\Rightarrow y=\frac{2-2\pi}{8+\pi}(x-2)+\frac{\pi}{4}\]

derivacion implicita 02

Leer más ...

Derivación logarítmica

En matemáticas, habitualmente escribimos una función real de variable real utilizando la siguiente notación:

\[\begin{matrix}f\,: &\mathbb{R}  &\longrightarrow  &\mathbb{R} \\  &x  &\longmapsto   &f(x)\end{matrix}\]

Abreviadamente escribimos también \(y=f(x)\) para indicar que \(x\) es el original o variable independiente e \(y\) es la imagen por \(f\) de \(x\) o variable dependiente, o sea que \(y\) varía en función de \(x\). Esto es muy común a la hora de explicar conceptos que tengan que ver con funciones reales de variable real. En otras materias, como en física o en cualquier otra ciencia experimental, una función también se puede escribir de manera similar usando otras letras. Por ejemplo, es muy frecuente escribir \(s=s(t)\) para indicar que el espacio varía en función del tiempo. En este caso el papel de \(x\) lo juega \(t\) y el papel de \(y\) lo juega \(s\).

Así, para designar la derivada de una función \(y=f(x)\) escribiremos \(y'=f'(x)\). Es decir, dependiendo del ambiente en que nos encontremos, escribiremos unas veces la derivada mediante la expresión \(y'\), y otras veces usando la notación \(f'(x)\). 

Si queremos expresar una función cuya expresión es, a su vez, una función elevada a otra función, lo más fácil es hacerlo así:

\[y=f(x)^{g(x)}\]

La derivada de esta función la notaremos:

\[y'=\left(f(x)^{g(x)}\right)'\]

Para derivar funciones del tipo anterior recurrimos a una técnica, denominada derivación logarítmica, que consiste en tomar logaritmos en ambos miembros de la igualdad y luego derivar.

En otras palabras, como \(y=f(x)^{g(x)}\) tenemos también que \(\ln y=\ln f(x)^{g(x)}\). Usando la propiedad de los logaritmos según la cual el logaritmo de una potencia es igual al exponente por el logaritmo de la base, tenemos que \(\ln y=g(x)\cdot\ln f(x)\). Derivando ahora en los dos miembros de la igualdad tenemos:

\[\frac{1}{y}\cdot y'=g'(x)\cdot\ln f(x)+g(x)\cdot\frac{1}{f(x)}\cdot f'(x)\]

Obsérvese que para derivar \(\ln y\), al ser \(y\) una función que depende de \(x\) tal y como se ha comentado anteriormente, hemos de hacer uso de la regla de la cadena, con lo que la derivada de \(\ln y\) es \(\dfrac{1}{y}\cdot y'\). Para derivar el segundo miembro se ha utilizando la regla de derivación del producto. Ahora, despejando \(y\) de la expresión anterior tenemos:

\[y'=y\left(g'(x)\cdot\ln f(x)+g(x)\cdot\frac{1}{f(x)}\cdot f'(x)\right)\Rightarrow y'=f(x)^{g(x)}\left(g'(x)\cdot\ln f(x)+\frac{g(x)\cdot f'(x)}{f(x)}\right)\]

Como la regla anterior no es fácil de recordar, lo mejor es seguir el proceso para derivar funciones en las que la variable independiente aparece tanto en la base como en el exponente. Veamos algunos ejemplos.

Derivar las siguientes funciones.

a)  \(y=x^{\cos x}\)

b)  \(y=(1+x)^{\ln x}\)

c)  \(y=\left(\dfrac{x+1}{x-1}\right)^x\)

a)  Tomando logaritmos en \(y=x^{\cos x}\) tenemos que \(\ln y=\ln x^{\cos x}\Rightarrow\ln y=\cos x\ln x\). Derivando ambos miembros de la igualdad:

\[\frac{1}{y}\cdot y'=-\text{sen}\,x\ln x+\cos x\frac{1}{x}\Rightarrow y'=y\left(\frac{\cos x}{x}-\text{sen}\,x\ln x\right)\Rightarrow\]

\[\Rightarrow y'=x^{\cos x}\left(\frac{\cos x}{x}-\text{sen}\,x\ln x\right)\]

b)  Tomando de nuevo logaritmos en \(y=(1+x)^{\ln x}\) tenemos que \(\ln y=\ln(1+x)^{\ln x}\Rightarrow\ln y=\ln x\ln(1+x)\). Derivando ambos miembros de la igualdad:

\[\frac{1}{y}\cdot y'=\frac{1}{x}\ln(1+x)+\ln x\frac{1}{1+x}\Rightarrow y'=y\left(\frac{\ln(1+x)}{x}+\frac{\ln x}{1+x}\right)\Rightarrow\]

\[\Rightarrow y'=(1+x)^{\ln x}\left(\frac{\ln(1+x)}{x}+\frac{\ln x}{1+x}\right)\]

c)  Procediendo como en los apartados anteriores tenemos:

\[y=\left(\dfrac{x+1}{x-1}\right)^x\Rightarrow\ln y=x\ln\left(\frac{x+1}{x-1}\right)\quad(1)\]

Antes de derivar en los dos miembros de la igualdad, derivemos la función \(f(x)=\ln\left(\dfrac{x+1}{x-1}\right)\):

\[f'(x)=\frac{1}{\frac{x+1}{x-1}}\cdot\frac{1\cdot(x-1)-(x+1)\cdot1}{(x-1)^2}=\frac{x-1}{x+1}\cdot\frac{-2}{(x-1)^2}=\frac{-2}{x^2-1}\]

Derivando ahora los dos miembros de la igualdad en \((1)\) tenemos:

\[\frac{1}{y}\cdot y'=1\cdot\ln\left(\frac{x+1}{x-1}\right)+x\cdot\frac{-2}{x^2-1}\Rightarrow y'=y\cdot\left(\ln\left(\frac{x+1}{x-1}\right)-\frac{2x}{x^2-1}\right)\Rightarrow\]

\[\Rightarrow y'=\left(\dfrac{x+1}{x-1}\right)^x\left(\ln\left(\frac{x+1}{x-1}\right)-\frac{2x}{x^2-1}\right)\]

Leer más ...
Suscribirse a este canal RSS

lasmatematicas.eu

Aplicaciones

Sígueme

webs de matemáticas