Menu
Distancia entre dos rectas que se cruzan. Perpendicular común

Distancia entre dos rectas que se c…

En un espacio de tres dim...

La regla de Cramer

La regla de Cramer

Consideremos un sistema d...

¿Necesitas ayuda con las matemáticas? ¿Piensas que nunca serás capaz de entenderlas?

¿Necesitas ayuda con las matemática…

Ahora puedes tener un pro...

Completando cuadrados. Aplicación al cálculo de primitivas o integrales indefinidas

Completando cuadrados. Aplicación a…

Supongamos que me piden c...

La Universidad Europea de Madrid (UEM)

La Universidad Europea de Madrid (U…

La Universidad Europea de...

Cuadratura de un segmento de parábola

Cuadratura de un segmento de parábo…

Una forma de acercarse al...

Ejercicios de aplicaciones de las derivadas y del teorema del valor medio

Ejercicios de aplicaciones de las d…

Se proponen a continuaci&...

Aplicaciones de las derivadas. El teorema del valor medio

Aplicaciones de las derivadas. El t…

Ya hemos hablado en un pa...

Prev Next

TwitterFacebook Google+

Distancia entre dos rectas que se cruzan. Perpendicular común

En un espacio de tres dimensiones dos rectas se cruzan cuando no tienen ningún punto en común y no están contenidas en el mismo plano. Si no tienen ningún punto en común pero sí que están contenidas en un mismo plano las rectas son paralelas.

Distancia entre dos rectas paralelas

Si las rectas son paralelas la distancia entre ambas viene dada por la distancia de un punto de una de ellas a la otra. Se entiende por distancia la distancia mínima del punto a la recta. La construcción requiere hallar el plano perpendicular a la recta que pasa por el punto. Este plano perpendicular cortará a la recta en cuestión en otro punto. De este modo, la distancia del punto a la recta será igual a la distancia entre los dos puntos mencionados. Vamos a hallar una fórmula que permita hallar esta distancia. Para ello sea \(P(p_1,p_2,p_3)\) un punto y \(r\) una recta que vamos a escribir en su forma continua:

\[r\equiv\frac{x-a_1}{u_1}=\frac{x-a_2}{u_2}=\frac{x-a_3}{u_2}\]

distancia1

Recordemos que \(A(a_1,a_2,a_3)\) y \(\vec{u}=(u_1,u_2,u_3)\) son un punto y un vector director de \(r\), respectivamente. Supongamos también que \(M(m_1,m_2,m_3)\) es el punto en el que el plano perpendicular a \(r\) que contiene a \(P\) corta a la recta \(r\) (ver figura anterior). A la distancia del punto \(P\) a la recta \(r\), que es lo que queremos calcular, la notaremos \(d(P,r)\). El vector que une el punto \(A\) de la recta con el punto \(P\) es \(\overrightarrow{AP}=(p_1-a_1,p_2-a_2,p_3-a_3)\).

Por un lado tenemos que el módulo del producto vectorial de \(\overrightarrow{AP}\) con \(\vec{u}\) es:

\[|\overrightarrow{AP}\times\vec{u}|=|\overrightarrow{AP}|\cdot|\vec{u}|\cdot\text{sen }\alpha\]

Por otro lado, observando la figura anterior se tiene que:

\[\text{sen }\alpha=\frac{d(P,r)}{|\overrightarrow{AP}|}\Rightarrow d(P,r)=|\overrightarrow{AP}|\cdot\text{sen }\alpha\]

Por tanto, sustituyendo en la primera expresión:

\[|\overrightarrow{AP}\times\vec{u}|=d(P,r)\cdot|\vec{u}|\]

Y de aquí obtenemos finalmente que la distancia entre un punto y una recta la podemos calcular mediante la siguiente fórmula:

\[d(P,r)=\frac{|\overrightarrow{AP}\times\vec{u}|}{|\vec{u}|}=\frac{|(p_1-a_1,p_2-a_2,p_3-a_3)\times(u_1,u_2,u_3)|}{\sqrt{u_1^2+u_2^2+u_3^2}}\]

Distancia entre dos rectas que se cruzan. Perpendicular común

Supongamos ahora que tenemos dos rectas \(r\) y \(s\) que se cruzan. Para hallar la distancia entre ambas, \(d(r,s)\), lo que se hace es calcular el plano que contienen a una de ellas (por ejemplo a \(s\)) y es paralelo a la otra (en este caso a \(r\)). La distancia entre ambas rectas vendrá dada por la distancia de la recta \(r\) a este plano, distancia que obviamente coincidirá con la distancia de un punto de \(r\) a dicho plano (por ser ambos paralelos). Por cierto, la distancia de un punto \(P(p_1,p_2,p_3)\) a un plano \(\pi\equiv Ax+By+Cz+D=0\), viene dada por la fórmula siguiente:

\[d(P,\pi)=\frac{|Ap_1+Bp_2+Cp_3+D|}{\sqrt{A^2+B^2+C^2}}\]

El cálculo de la perpendicular común a \(r\) y a \(s\), es decir, de la recta que corta perpendicularmente a ambas, que llamaremos \(t\), precisa de una construcción en tres pasos. Son los siguientes:

  • Cálculo del plano \(\pi\) que contiene a \(s\) y es paralelo a \(r\).
  • Cálculo del plano \(\pi'\) que contiene a \(s\) y es perpendicular a \(\pi\).
  • Cálculo del plano \(\pi''\) que contiene a \(r\) y es perpendicular a \(\pi\).

Entonces, tal y como se puede apreciar en la figura siguiente, la perpendicular común \(t\) a \(r\) y a \(s\) será la intersección de los planos \(\pi'\) y \(\pi''\): \(t=\pi'\cap\pi''\). Hemos llamado también \(M\) al punto de corte de \(r\) y \(t\), y \(N\) al punto de corte de \(s\) y \(t\): \(M=r\cap t\), \(N=s\cap t\).

distancia2

Tal y como hemos comentado anteriormente, la distancia entre \(r\) y \(s\) es la misma que la distancia entre \(r\) y \(\pi\), distancia que, obviamente, también ha de coincidir con la distancia entre los puntos \(M\) y \(N\):

\[d(r,s)=d(r,\pi)=d(M,N)\]

Veamos un caso práctico. Consideremos las rectas \(r\) y \(s\) siguientes:

\[r\equiv\begin{cases}x+y-z=1\\x-2z=-1\end{cases}\quad;\quad s\equiv x=\frac{y+2}{-1}=\frac{z-1}{2}\]

Lo primero de todo es comprobar que, efectivamente, ambas rectas se cruzan. Si escribimos la recta \(r\) en paramétricas:

\[r\equiv\begin{cases}
  x=-1+2\lambda\\
  y=2-\lambda\\
  z=\lambda
\end{cases}\]

tenemos que un punto y un vector director de \(r\) son, respectivamente, \(A(-1,2,0)\) y \(\vec{u}=(2,-1,1)\). Del mismo modo, un punto y un vector director de la recta \(s\) son, respectivamente, \(B(0,-2,1)\), \(\vec{v}=(1,-1,2)\).

Por un lado, tenemos que

\[\text{rango}\left(
         \begin{array}{c}
           \vec{u} \\
           \vec{v} \\
         \end{array}
       \right)=\text{rango}\left(
                      \begin{array}{ccc}
                        2 & -1 & 1 \\
                        1 & -1 & 2 \\
                      \end{array}
                    \right)=2
\]

ya que la matriz anterior contiene al menos un menor de orden dos distinto de cero:

\[\left|\begin{array}{cc}
  2 & -1\\
  1 & -1
\end{array}\right|=-2-(-1)=-1\neq0\]

Por otro lado, tenemos que

\[\text{rango}\left(
                \begin{array}{c}
                  \vec{u} \\
                  \vec{v} \\
                  \overrightarrow{AB} \\
                \end{array}
              \right)=\text{rango}\left(
                                    \begin{array}{ccc}
                                      2 & -1 & 1 \\
                                      1 & -1 & 2 \\
                                      1 & -4 & 1 \\
                                    \end{array}
                                  \right)=3
\]

ya que

\[\left|\begin{array}{ccc}
  2 & -1 & 1 \\
  1 & -1 & 2 \\
  1 & -4 & 1
\end{array}\right|=(-2-2-4)-(-1-1-16)=-8-(-18)=10\neq0\]

Del razonamiento anterior se deduce que las rectas \(r\) y \(s\) se cruzan. Vamos a dar los pasos mencionados anteriormente para hallar la perpendicular común y la distancia entre \(r\) y \(s\).

En primer lugar vamos a hallar el plano \(\pi\) que contiene a \(s\) y es paralelo a \(r\). Un punto de dicho plano será un punto de \(s\), por ejemplo el punto \(B(0,-2,1)\) y dos direcciones suyas serán las de \(r\) y las de \(s\), es decir, podemos tomar como vectores directores del plano los vectores \(\vec{u}=(2,-1,1)\), \(\vec{v}=(1,-1,2)\). Así el plano \(\pi\) vendrá dado por

\[\pi\equiv\left|\begin{array}{ccc}
          x & y+2 & z-1 \\
          2 & -1 & 1 \\
          1 & -1 & 2
        \end{array}\right|=0\]

Desarrollando el determinante anterior:

\[(-2x+y+2-2z+2)-(-z+1+4y+8-x)=0\Rightarrow\pi\equiv x+3y+z+5=0\]

Teniendo en cuenta que la ecuación general de la recta \(s\) es:

\[s\equiv\begin{cases}
  x+y+2=0\\
  2x-z+1=0
\end{cases}\]

otra forma de hallar el plano \(\pi\) es hacer uso del haz de planos de arista la recta \(s\):

\[\lambda(x+y+2)+\mu(2x-z+1)=0\Leftrightarrow(\lambda+2\mu)x+\lambda y-\mu z+2\lambda+\mu=0\]

Para que un plano de este haz sea paralelo a la recta \(r\) un vector normal al plano, \((\lambda+2\mu,\lambda,-\mu)\), debe ser perpendicular al vector director de \(r\), \(\vec{u}=(2,-1,1)\), es decir:

\[2(\lambda+2\mu)+(-1)\lambda+1(-\mu)=0\Leftrightarrow\lambda+3\mu=0\]

Esta igualdad se cumple, por ejemplo, para \(\lambda=3\) y \(\mu=-1\), con lo que el plano \(\pi\) que buscamos será:

\[\pi\equiv x+3y+z+5=0\]

Llegados a este punto ya estamos en condiciones de hallar la distancia entre \(r\) y \(s\): \(d(r,s)=d(r,\pi)\). Además, esta última distancia coincidirá con \(d(A,\pi)\):

\[d(r,s)=d(r,\pi)=d(A,\pi)=\frac{|1\cdot(-1)+3\cdot2+1\cdot0+5|}{\sqrt{1^2+3^2+1^2}}=\frac{10}{\sqrt{11}}=\frac{10\sqrt{11}}{11}\]

Continuando con nuestra construcción calcularemos, en segundo lugar, el plano \(\pi'\) que contiene a \(s\) y es perpendicular a \(\pi\). Ya hemos visto que el haz de planos de arista la recta \(s\) es

\[(\lambda+2\mu)x+\lambda y-\mu z+2\lambda+\mu=0\]

Para que un plano de este haz sea perpendicular a \(\pi\) se ha de cumplir que los vectores perpendiculares a ambos planos sea ellos mismos también perpendiculares, es decir:

\[1(\lambda+2\mu)+3\lambda+1(-\mu)=0\Leftrightarrow4\lambda+\mu=0\]

Tomando \(\lambda=-1\) y \(\mu=4\), tenemos que el plano \(\pi'\) es el siguiente:

\[\pi'\equiv 7x-y-4z+2=0\]

En tercer y último lugar vamos a calcular el plano \(\pi''\) que contiene a \(r\) y es perpendicular a \(\pi\). Para ello volveremos a usar la técnica del haz de planos, pero en este caso de arista la recta \(r\):

\[\lambda(x+y-z-1)+\mu(x-2z+1)=0\Leftrightarrow(\lambda+\mu)x+\lambda y+(-\lambda-2\mu)z+(-\lambda+\mu)=0\]

Para que un plano de este haz sea perpendicular a \(\pi\) se tiene que cumplir, al igual que en el caso anterior, que los vectores perpendiculares a ambos planos sean también perpendiculares, es decir:

\[1(\lambda+\mu)+3\lambda+1(-\lambda-2\mu)=0\Leftrightarrow3\lambda-\mu=0\]

Tomando \(\lambda=1\) y \(\mu=3\), obtenemos el plano \(\pi''\):

\[\pi''\equiv4x+y-7z+2=0\]

La recta \(t\), perpendicular común a \(r\) y a \(s\), es la intersección de \(\pi'\) y de \(\pi''\). Por tanto:

\[t=\pi'\cap\pi''\equiv\begin{cases}
  7x-y-4z+2=0\\
  4x+y-7z+2=0
\end{cases}\]

Vamos a mostrar que la distancia hallada anteriormente entre las rectas \(r\) y \(s\) coincide con la distancia entre los puntos \(M\) y \(N\).

Para hallar los puntos \(M\) y \(N\) resolveremos los sistemas formados por \(r\) y \(t\), por un lado, y por \(s\) y \(t\), por otro, ya que \(r\cap t=M\) y \(s\cap t=N\).

El sistema formado por \(r\) y \(t\) tiene cuatro ecuaciones y tres incógnitas. Podemos eliminar una de ellas, por ejemplo la última ecuación de la recta \(t\). El sistema queda del siguiente modo:

\[\begin{cases}
  x+y-z=1\\
  x-2z=-1\\
  7x-y-4z=-2
\end{cases}\]

El determinante de la matriz de los coeficientes es

\[\left|\begin{array}{ccc}
          1 & 1 & -1 \\
          1 & 0 & -2 \\
          7 & -1 & -4
        \end{array}
\right|=(-14+1)-(-4+2)=-13+2=-11\]

Por tanto, aplicando la regla de Cramer:

\[x=\frac{\left|\begin{array}{ccc}
                  1 & 1 & -1 \\
                  -1 & 0 & -2 \\
                  -2 & -1 & -4
                \end{array}
\right|}{-11}=\frac{(4-1)-(4+2)}{-11}=\frac{-3}{-11}=\frac{3}{11}\]

\[y=\frac{\left|\begin{array}{ccc}
                  1 & 1 & -1 \\
                  1 & -1 & -2 \\
                  7 & -2 & -4
                \end{array}
\right|}{-11}=\frac{(4-14+2)-(7-4+4)}{-11}=\frac{-15}{-11}=\frac{15}{11}\]

\[z=\frac{\left|\begin{array}{ccc}
                  1 & 1 & 1 \\
                  1 & 0 & -1 \\
                  7 & -1 & -2
                \end{array}
\right|}{-11}=\frac{(-7-1)-(-2+1)}{-11}=\frac{-7}{-11}=\frac{7}{11}\]

De manera similar resolveremos el sistema formado por la recta \(s\) y por la recta \(t\). También eliminaremos la última ecuación de la recta \(t\). El sistema es el siguiente:

\[\begin{cases}
  x+y=-2\\
  2x-z=-1\\
  7x-y-4z=-2
\end{cases}\]

El determinante de la matriz de los coeficientes es

\[\left|\begin{array}{ccc}
          1 & 1 & 0 \\
          2 & 0 & -1 \\
          7 & -1 & -4
        \end{array}
\right|=-7-(-8+1)=-7+7=0\]

Esto indica que no podemos eliminar la última ecuación de la recta \(r\). Así que eliminaremos la primera y el sistema quedará de la siguiente manera:

\[\begin{cases}
  x+y=-2\\
  2x-z=-1\\
  4x+y-7z=-2
\end{cases}\]

Ahora el determinante de la matriz de los coeficientes es:

\[\left|\begin{array}{ccc}
          1 & 1 & 0 \\
          2 & 0 & -1 \\
          4 & 1 & -7
        \end{array}
\right|=-4-(-14-1)=-4+13=11\]

Volviendo a aplicar la regla de Cramer tenemos:

\[x=\frac{\left|\begin{array}{ccc}
                  -2 & 1 & 0 \\
                  -1 & 0 & -1 \\
                  -2 & 1 & -7
                \end{array}
\right|}{11}=\frac{2-(7+2)}{11}=-\frac{7}{11}\]

\[y=\frac{\left|\begin{array}{ccc}
                  1 & -2 & 0 \\
                  2 & -1 & -1 \\
                  4 & -2 & -7
                \end{array}
\right|}{11}=\frac{(7+8)-(28+2)}{11}=-\frac{15}{11}\]

\[z=\frac{\left|\begin{array}{ccc}
                  1 & 1 & -2 \\
                  2 & 0 & -1 \\
                  4 & 1 & -2
                \end{array}
\right|}{11}=\frac{(-4-4)-(-4-1)}{11}=-\frac{3}{11}\]

De este modo tenemos que

\[M=r\cap t=\left(\frac{3}{11},\frac{15}{11},\frac{7}{11}\right)\quad;\quad N=s\cap t=\left(-\frac{7}{11},-\frac{15}{11},-\frac{3}{11}\right)\]

Y de aquí:

\[\overrightarrow{MN}=\left(-\frac{7}{11}-\frac{3}{11},-\frac{15}{11}-\frac{15}{11},-\frac{3}{11}-\frac{7}{11}\right)=\left(-\frac{10}{11},-\frac{30}{11},-\frac{10}{11}\right)\]

Así pues, la distancia entre las rectas \(r\) y \(s\) es:

\[d(r,s)=d(M,N)=|\overrightarrow{MN}|=\sqrt{\left(-\frac{10}{11}\right)^2+\left(-\frac{30}{11}\right)^2+\left(-\frac{10}{11}\right)^2}= \frac{\sqrt{1100}}{11}=\frac{10\sqrt{11}}{11}\]


Puedes descargar el artículo completo en pdf haciendo clic aquí.


Leer más ...

Producto vectorial. Producto mixto de tres vectores. Aplicaciones

Producto vectorial

Para una lectura comprensiva de este artículo se recomienda leer antes este otro: "Proyecciones. Producto escalar de vectores. Aplicaciones".

Dados dos vectores de distinta dirección podemos construir, trasladando cada vector al extremo del otro, un paralelogramo. Fíjate en la figura siguiente

 producto vectorial 01

Su área es el producto de la base por la altura y, con un poco de trigonometría básica, tenemos:

\[A = \left| {\vec u} \right|h = \left| {\vec u} \right|\,\,\left| {\vec v} \right|{\rm{sen}}\,\alpha\]

El producto vectorial de dos vectores \(\vec u\) y \(\vec v\), que notaremos \(\vec u \times \vec v\) (en este orden), se define como otro vector que tiene por módulo el área del paralelogramo formado por ambos, por dirección la de la recta perpendicular al plano que contiene a este paralelogramo, y el sentido de girar desde \(\vec u\) hacia \(\vec v\) (regla del sacacorchos).

producto vectorial 02

Es conveniente insistir en que el producto vectorial de dos vectores \(\vec u = \left( {{u_1},{u_2},{u_3}} \right)\) y \(\vec v = \left( {{v_1},{v_2},{v_3}} \right)\), a diferencia del producto escalar, es un vector \(\vec w = \vec u \times \vec v\). Vamos a obtener a continuación la expresión analítica del vector \(\vec w = \left( {z,y,z} \right)\) que será de gran utilidad en la resolución de diversos tipos de problemas.

Como \(\vec u \bot \vec w\) y \(\vec v \bot \vec w\), entonces \(\vec u \cdot \vec w = 0\) y \(\vec v \cdot \vec w = 0\), con lo que podemos formar el siguiente sistema:

\[\left\{ \begin{array}{l}
{u_1}x + {u_2}y + {u_3}z = 0\\
{v_1}x + {v_2}y + {v_3}z = 0
\end{array} \right.\]

El sistema anterior es claramente compatible indeterminado ya que si suponemos que los vectores \(\vec u\) y \(\vec v\) tienen distinta dirección, el rango de la matriz \(\left( {\begin{array}{*{20}{c}}
{{u_1}}&{{u_2}}&{{u_3}}\\
{{v_1}}&{{v_2}}&{{v_3}}
\end{array}} \right)\) es dos y el número de incógnitas es tres.

Vamos a resolver el sistema anterior. Para ello vamos a suponer, ya que el rango es dos, que el determinante de orden dos \(\left| {\begin{array}{*{20}{c}}
{{u_1}}&{{u_2}}\\
{{v_1}}&{{v_2}}
\end{array}} \right|\) es distinto de cero. Ahora llamamos \(z=\lambda\), con lo  que el sistema se convierte en

\[\left\{ \begin{array}{l}
{u_1}x + {u_2}y =  - {u_3}\lambda \\
{v_1}x + {v_2}y =  - {v_3}\lambda
\end{array} \right.\]

cuyas soluciones son, aplicando la regla de Cramer, las siguientes:

\[x = \frac{{\left| {\begin{array}{*{20}{c}}
{ - {u_3}\lambda }&{{u_2}}\\
{ - {v_3}\lambda }&{{v_2}}
\end{array}} \right|}}{{\left| {\begin{array}{*{20}{c}}
{{u_1}}&{{u_2}}\\
{{v_1}}&{{v_2}}
\end{array}} \right|}} =  - \lambda \frac{{\,\left| {\begin{array}{*{20}{c}}
{{u_3}}&{{u_2}}\\
{{v_3}}&{{v_2}}
\end{array}} \right|\,}}{{\left| {\begin{array}{*{20}{c}}
{{u_1}}&{{u_2}}\\
{{v_1}}&{{v_2}}
\end{array}} \right|}} = \lambda \frac{{\,\left| {\begin{array}{*{20}{c}}
{{u_2}}&{{u_3}}\\
{{v_2}}&{{v_3}}
\end{array}} \right|\,}}{{\left| {\begin{array}{*{20}{c}}
{{u_1}}&{{u_2}}\\
{{v_1}}&{{v_2}}
\end{array}} \right|}}\ ;\ y = \frac{{\left| {\begin{array}{*{20}{c}}
{{u_1}}&{ - {u_3}\lambda }\\
{{v_1}}&{ - {v_3}\lambda }
\end{array}} \right|}}{{\left| {\begin{array}{*{20}{c}}
{{u_1}}&{{u_2}}\\
{{v_1}}&{{v_2}}
\end{array}} \right|}} =  - \lambda \frac{{\,\left| {\begin{array}{*{20}{c}}
{{u_1}}&{{u_3}}\\
{{v_1}}&{{v_3}}
\end{array}} \right|{\kern 1pt} }}{{\left| {\begin{array}{*{20}{c}}
{{u_1}}&{{u_2}}\\
{{v_1}}&{{v_2}}
\end{array}} \right|}}\ ;\ z=\lambda\]

Tomando \(\lambda  = \left| {\begin{array}{*{20}{c}}
{{u_1}}&{{u_2}}\\
{{v_1}}&{{v_2}}
\end{array}} \right|\), las soluciones anteriores las podemos escribir así:

\[x = \left| {\begin{array}{*{20}{c}}
{{u_2}}&{{u_3}}\\
{{v_2}}&{{v_3}}
\end{array}} \right|\ ;\ y =  - \left| {\begin{array}{*{20}{c}}
{{u_1}}&{{u_3}}\\
{{v_1}}&{{v_3}}
\end{array}} \right|\ ;\ z = \left| {\begin{array}{*{20}{c}}
{{u_1}}&{{u_2}}\\
{{v_1}}&{{v_2}}
\end{array}} \right|\]

Esto quiere decir que el producto vectorial de \(\vec u = \left( {{u_1},{u_2},{u_3}} \right)\) y \(\vec v = \left( {{v_1},{v_2},{v_3}} \right)\), \(\vec u \times \vec v\), es otro vector cuyas coordenadas son

\[\vec u \times \vec v = \left( {\left| {\begin{array}{*{20}{c}}
{{u_2}}&{{u_3}}\\
{{v_2}}&{{v_3}}
\end{array}} \right|, - \left| {\begin{array}{*{20}{c}}
{{u_1}}&{{u_3}}\\
{{v_1}}&{{v_3}}
\end{array}} \right|,\left| {\begin{array}{*{20}{c}}
{{u_1}}&{{u_2}}\\
{{v_1}}&{{v_2}}
\end{array}} \right|} \right)\]

Estas coordenadas coinciden exactamente con el desarrollo del siguiente determinante por los elementos de la primera fila:

\[\vec u \times \vec v = \left| {\begin{array}{*{20}{c}}
i&j&k\\
{{u_1}}&{{u_2}}&{{u_3}}\\
{{v_1}}&{{v_2}}&{{v_3}}
\end{array}} \right|\]

La expresión anterior es fácil de recordar y usando la misma podemos hallar con facilidad las coordenadas del producto vectorial de dos vectores dados.

Algunas aplicaciones del producto vectorial

Distancia de un punto a una recta

Dados un punto \(P\) y una recta \(r\), se llama distancia de \(P\) a \(r\), que denotaremos \(d\left( {P,r} \right)\), a la distancia de \(P\) a \(M\), donde \(M\) es el punto de intersección de \(r\) con el plano que pasa por \(P\) y es perpendicular a \(r\). Si \(P\left( {{p_1},{p_2},{p_3}} \right)\) y la recta \(r\) tiene ecuaciones continuas \(r \equiv \frac{{x - {a_1}}}{{{u_1}}} = \frac{{y - {a_2}}}{{{u_2}}} = \frac{{z - {a_3}}}{{{u_3}}}\), entonces la distancia de   a   viene dada por:

\[d(P,\,\,r) = \frac{{\left| {\left( {{p_1} - {a_1},\,\,{p_2} - {a_2},\,\,{p_3} - {a_3}} \right) \times \left( {{u_1},\,\,{u_2},\,\,{u_3}} \right)} \right|}}{{\sqrt {{u_1}^2 + {u_2}^2 + {u_3}^2} }}\]

producto vectorial 03

Para demostrarlo sean \(M\left( {{m_1},\,\,{m_2},\,\,{m_3}} \right)\), \(\vec u = \left( {{u_1},\,\,{u_2},\,\,{u_3}} \right)\), y \(\overrightarrow {AP}\) el vector que une un punto cualquiera \(A\) de la recta con el punto \(P\): \(\overrightarrow {AP}  = \left( {{p_1} - {a_1},\,\,{p_2} - {a_2},\,\,{p_3} - {a_3}} \right)\). Hagamos el producto vectorial de ambos vectores y hallemos su módulo: \(\left| {\overrightarrow {AP}  \times \vec u} \right| = \left| {\overrightarrow {AP} } \right|\left| {\vec u} \right|\,{\rm{sen}}\,\alpha\). En la figura anterior se observa que la distancia buscada es \(d(P,r) = \left| {\overrightarrow {AP} } \right|{\rm{sen}}\,\alpha\), y sustituyendo en la expresión anterior tenemos \(\left| {\overrightarrow {AP}  \times \vec u} \right| = d(P,r)\left| {\vec u} \right|\), luego

\[d(P,r) = \frac{{\left| {\overrightarrow {AP}  \times \vec u} \right|}}{{\left| {\vec u} \right|}} = \frac{{\left| {\left( {{p_1} - {a_1},\,\,{p_2} - {a_2},\,\,{p_3} - {a_3}} \right) \times \left( {{u_1},\,\,{u_2},\,\,{u_3}} \right)} \right|}}{{\sqrt {{u_1}^2 + {u_2}^2 + {u_3}^2} }}\]

Distancia entre dos rectas paralelas

Se define esta distancia como la distancia de un punto de cualquiera de una recta a la otra. Así, si las rectas tienen ecuaciones continuas: \(r \equiv \frac{{x - {a_1}}}{{{u_1}}} = \frac{{y - {a_2}}}{{{u_2}}} = \frac{{z - {a_3}}}{{{u_3}}}\) y \(s \equiv \frac{{x - {b_1}}}{{{u_1}}} = \frac{{y - {b_2}}}{{{u_2}}} = \frac{{z - {b_3}}}{{{u_3}}}\) (obsérvese que, por ser paralelas, tienen el mismo vector director), basta aplicar la fórmula de la distancia del punto \(\left( {{a_1},\,\,{a_2},\,\,{a_3}} \right)\) a la segunda recta.

Área de un paralelogramo y de un triángulo

producto vectorial 04

Ya se ha comentado al principio que el módulo del producto vectorial de dos vectores es igual al área del paralelogramo correspondiente. En particular, dado un paralelogramo \(ABCD\) en el espacio, supongamos que las coordenadas de tres vértices son \(A\left( {{a_1},{a_2},{a_3}} \right)\), \(B\left( {{b_1},{b_2},{b_3}} \right)\) y \(C\left( {{c_1},{c_2},{c_3}} \right)\). Si llamamos \(S\) al área o superficie del paralelogramo, entonces:

\[\overrightarrow {AB}  \times \overrightarrow {AC}  = \left| {\begin{array}{*{20}{c}}
{\overrightarrow i }&{\overrightarrow j }&{\overrightarrow k }\\
{{b_1} - {a_1}}&{{b_2} - {a_2}}&{{b_3} - {a_3}}\\
{{c_1} - {a_1}}&{{c_2} - {a_2}}&{{c_3} - {a_3}}
\end{array}} \right| \Rightarrow S = \left| {\overrightarrow {AB}  \times \overrightarrow {AC} } \right|\]

El área o superficie del triángulo será la mitad de la del paralelogramo (cualesquiera de las dos diagonales del paralelogramo dividen al mismo en dos triángulos de igual área). Por tanto la superficie \(S\) del triángulo, conocidos sus tres vértices \(A\), \(B\) y \(C\) es:

\[S = \frac{1}{2}\left| {\overrightarrow {AB}  \times \overrightarrow {AC} } \right|\]

Producto mixto de vectores

Dados tres vectores \(\vec u\), \(\vec v\) y \(\vec w\) se llama producto mixto de dichos vectores al número obtenido así:

\[\vec u \cdot \left( {\vec v \times \vec w} \right)\]

El producto mixto se denota así: \(\left( {\vec u,\vec v,\vec w} \right)\). Si las coordenadas de los vectores son \(\vec u = \left( {{u_1},{u_2},{u_3}} \right)\), \(\vec v = \left( {{v_1},{v_2},{v_3}} \right)\) y \(\vec w = \left( {{w_1},{w_2},{w_3}} \right)\), entonces:

\[\vec u \cdot \left( {\vec v \times \vec w} \right) = \left( {{u_1},\,\,{u_2},\,\,{u_3}} \right) \cdot \left( {\left| {\begin{array}{*{20}{c}}
{{u_2}}&{{u_3}}\\
{{v_2}}&{{v_3}}
\end{array}} \right|, - \left| {\begin{array}{*{20}{c}}
{{u_1}}&{{u_3}}\\
{{v_1}}&{{v_3}}
\end{array}} \right|,\left| {\begin{array}{*{20}{c}}
{{u_1}}&{{u_2}}\\
{{v_1}}&{{v_2}}
\end{array}} \right|} \right)=\]

\[={u_1}\left| {\begin{array}{*{20}{c}}
{{u_2}}&{{u_3}}\\
{{v_2}}&{{v_3}}
\end{array}} \right| - {u_2}\left| {\begin{array}{*{20}{c}}
{{u_1}}&{{u_3}}\\
{{v_1}}&{{v_3}}
\end{array}} \right| + {u_3}\left| {\begin{array}{*{20}{c}}
{{u_1}}&{{u_2}}\\
{{v_1}}&{{v_2}}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
{{u_1}}&{{u_2}}&{{u_3}}\\
{{v_1}}&{{v_2}}&{{v_3}}\\
{{w_1}}&{{w_2}}&{{w_3}}
\end{array}} \right|\]

Por tanto, el producto mixto de tres vectores viene dado por la siguiente expresión:

\[\left( {\vec u,\,\,\vec v,\,\,\vec w} \right) = \vec u \cdot \left( {\vec v \times \vec w} \right) = \left| {\begin{array}{*{20}{c}}
{{u_1}}&{{u_2}}&{{u_3}}\\
{{v_1}}&{{v_2}}&{{v_3}}\\
{{w_1}}&{{w_2}}&{{w_3}}
\end{array}} \right|\]

El producto mixto se usa, por ejemplo, en el cálculo de volúmenes. A continuación vamos a deducir un par de fórmulas mediante las cuales podamos obtener el volumen de un tetraedro y el volumen de un paralelepípedo o prisma rectangular.

Volumen de un paralelepípedo o prisma rectangular

Observemos la siguiente figura

producto vectorial 05

Sabemos, por la definición de producto escalar que \(\vec u \cdot \left( {\vec v \times \vec w} \right) = \left| {\vec u} \right| \cdot \left| {\vec v \times \vec w} \right| \cdot \cos \alpha\). Pero, tal y como hemos visto, \(\left| {\vec u \times \vec w} \right|\), representa el área \(A\) sombreada en la figura anterior. Además, también tenemos que \(\cos \alpha  = \frac{h}{{\left| {\vec u} \right|}}\), con lo que \(h = \vec u \cdot \cos \alpha\), que representa la altura \(h\) del paralelepípedo dibujado. Resulta por consiguiente que

\[\vec u \cdot \left( {\vec v \times \vec w} \right) = \left| {\vec u} \right| \cdot \left| {\vec v \times \vec w} \right| \cdot \cos \alpha  = A \cdot h\]

Es decir, que el producto mixto \(\vec u \cdot \left( {\vec v \times \vec w} \right)\), representa geométricamente el volumen \(A\cdot h\) del paralelepípedo de lados \(\vec u\), \(\vec v\) y \(\vec w\). En coordenadas, si \(\vec u = \left( {{u_1},{u_2},{u_3}} \right)\), \(\vec v = \left( {{v_1},{v_2},{v_3}} \right)\) y \(\vec w = \left( {{w_1},{w_2},{w_3}} \right)\), el volumen \(V\) lo podemos expresar así:

\[V = \vec u \cdot \left( {\vec v \times \vec w} \right) = \left( {\vec u,\vec v,\vec w} \right) = \left| {\,\left| {\begin{array}{*{20}{c}}
{{u_1}}&{{u_2}}&{{u_3}}\\
{{v_1}}&{{v_2}}&{{v_3}}\\
{{w_1}}&{{w_2}}&{{w_3}}
\end{array}} \right|\,} \right|\]

Obsérvese que escribimos valor absoluto para asegurarnos de que el volumen es positivo.

Si lo que conocemos son los vértices \(A\left( {{a_1},\,\,{a_2},\,\,{a_3}} \right)\), \(B\left( {{b_1},\,\,{b_2},\,\,{b_3}} \right)\), \(C\left( {{c_1},\,\,{c_2},\,\,{c_3}} \right)\) y \(D\left( {{d_1},\,\,{d_2},\,\,{d_3}} \right)\), del prisma rectangular de tal manera que \(\overrightarrow {AB}  = \vec u\), \(\overrightarrow {AC}  = \vec v\) y \(\overrightarrow {AD}  = \vec w\), entonces la fórmula del volumen \(V\) del paralelepípedo viene dada por

\[V = \left| {\,\left| {\begin{array}{*{20}{c}}
{{b_1} - {a_1}}&{{b_2} - {a_2}}&{{b_3} - {a_3}}\\
{{c_1} - {a_1}}&{{c_2} - {a_2}}&{{c_3} - {a_3}}\\
{{d_1} - {a_1}}&{{d_2} - {a_2}}&{{d_3} - {a_3}}
\end{array}} \right|\,} \right|\]

Volumen de un tetraedro

Sean \(A\left( {{a_1},\,\,{a_2},\,\,{a_3}} \right)\), \(B\left( {{b_1},\,\,{b_2},\,\,{b_3}} \right)\), \(C\left( {{c_1},\,\,{c_2},\,\,{c_3}} \right)\) y \(D\left( {{d_1},\,\,{d_2},\,\,{d_3}} \right)\) cuatro puntos del espacio. Al unirlos entre sí de todas las maneras posibles, determinan un tetraedro cuyo volumen \(V\) es igual a la sexta parte del valor absoluto del producto mixto \(\left( {\overrightarrow {AB} ,\,\,\overrightarrow {AC} \,\,\overrightarrow {AD} } \right)\), es decir:

\[V = \frac{1}{6}\,\,\left| {\,\,\left| {\begin{array}{*{20}{c}}
{{b_1} - {a_1}}&{{b_2} - {a_2}}&{{b_3} - {a_3}}\\
{{c_1} - {a_1}}&{{c_2} - {a_2}}&{{c_3} - {a_3}}\\
{{d_1} - {a_1}}&{{d_2} - {a_2}}&{{d_3} - {a_3}}
\end{array}} \right|\,\,} \right|\]

La demostración se basa en que el volumen de un tetraedro es la tercera parte del área de la base por la altura:

\[V = \frac{1}{3}\left( {{\rm{Área}}\,ACD} \right) \cdot h\]

producto vectorial 06

Por un lado, el área del triángulo \(ACD\) sabemos que es igual a \(\frac{1}{2}\left| {\overrightarrow {AC}  \times \overrightarrow {AD} } \right|\) y, por otro (ver figura anterior), \({\rm{sen}}\,\alpha  = \frac{h}{{\left| {\overrightarrow {AB} } \right|}}\), es decir, \(h = \left| {\overrightarrow {AB} } \right|\,{\rm{sen}}\,\alpha  = \left| {\overrightarrow {AB} } \right|\cos \left( {\frac{\pi }{2} - \alpha } \right)\). Sustituyendo estos valores en la fórmula del volumen tenemos:

\[V = \frac{1}{3} \cdot \frac{1}{2}\left| {\overrightarrow {AC}  \times \overrightarrow {AD} } \right| \cdot \left| {\overrightarrow {AB} } \right|\,\cos \left( {\frac{\pi }{2} - \alpha } \right) =\]

\[=\frac{1}{6}\overrightarrow {AB}  \cdot \left( {\overrightarrow {AC}  \times \overrightarrow {AD} } \right) = \frac{1}{6}\left( {\overrightarrow {AB} ,\overrightarrow {AC} ,\overrightarrow {AD} } \right) = \frac{1}{6}\left| {\begin{array}{*{20}{c}}
{{b_1} - {a_1}}&{{b_2} - {a_2}}&{{b_3} - {a_3}}\\
{{c_1} - {a_1}}&{{c_2} - {a_2}}&{{c_3} - {a_3}}\\
{{d_1} - {a_1}}&{{d_2} - {a_2}}&{{d_3} - {a_3}}
\end{array}} \right|\]

Según el orden en que tomemos los vectores ese determinante puede salir positivo o negativo. Por lo tanto, para que el volumen sea positivo, en la fórmula pondremos el valor absoluto del determinante.


Puedes descargar el artículo completo en pdf haciendo clic aquí.


Leer más ...

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones

La proyección de un punto \(A\) sobre una recta \(r\) es el punto \(B\) donde la recta perpendicular a \(r\) que pasa por \(A\) corta a la recta \(r\). Con un dibujo se entiende muy bien.

producto escalar 01

La proyección de un segmento \(\overline {AB}\) sobre una recta \(r\) es otro segmento \(\overline {CD}\) contenido en la recta \(r\), cuyos extremos son, respectivamente, las proyecciones de los puntos \(A\) y \(B\) sobre la recta \(r\). Veámoslo con otro dibujo.

producto escalar 02

Un vector es un segmento orientado. Por tanto, la proyección de un vector \(\vec u\) sobre una recta se hace, tal y como hemos visto anteriormente, exactamente igual que la proyección de un segmento sobre una recta.

Se define la proyección de un vector \(\vec u\) sobre un vector \(\vec v\) como la proyección del vector \(\vec u\) sobre la recta que contiene al vector \(\vec v\). A la proyección de un vector \(\vec u\) sobre un vector \(\vec v\) la notaremos \({p_{\vec v}}\left( {\vec u} \right)\).

producto escalar 03

En la figura anterior se ha realizado la proyección de un vector \(\vec v\) sobre un vector \(\vec u\). Como se puede observar, la proyección es la misma si hacemos coincidir el origen de ambos vectores. Evidentemente, la proyección del vector \(\vec v\) sobre el vector \(\vec u\) no es la misma que la proyección del vector \(\vec u\) sobre el vector \(\vec v\): \({p_{\vec u}}\left( {\vec v} \right) \ne {p_{\vec v}}\left( {\vec u} \right)\) (ver figura siguiente).

producto escalar 04

Obsérvese también que todo par de vectores \(\vec u\) y \(\vec v\) forman entre sí un ángulo \(\alpha\). Recordando que a la longitud o módulo de un vector \(\vec u\) la denotamos por \(|\vec u|\), y haciendo uso de trigonometría básica (razones trigonométricas en un triángulo rectángulo), podemos escribir, si nos fijamos en las dos figuras anteriores, las dos siguientes relaciones:

\[\cos \alpha  = \frac{{{p_{\vec u}}\left( {\vec v} \right)}}{{\left| {\vec v} \right|}} \Rightarrow {p_{\vec u}}\left( {\vec v} \right) = \left| {\vec v} \right|\cos \alpha\quad;\quad\cos \alpha  = \frac{{{p_{\vec v}}\left( {\vec u} \right)}}{{\left| {\vec u} \right|}} \Rightarrow {p_{\vec v}}\left( {\vec u} \right) = \left| {\vec u} \right|\cos \alpha\qquad(1)\]

Producto escalar de vectores

El producto escalar de vectores está íntimamente relacionado con la proyección de un vector sobre otro. De hecho, se define el producto escalar de dos vectores como el producto del módulo de uno de ellos, por la proyección del otro sobre el primero. Es decir:

\[\vec u \cdot \vec v = \left| {\vec u} \right|{p_{\vec u}}\left( {\vec v} \right)\quad;\quad\vec u \cdot \vec v = \left| {\vec v} \right|{p_{\vec v}}\left( {\vec u} \right)\qquad(2)\]

Obsérvese que si el vector sobre el que hacemos la proyección tiene longitud o módulo igual a uno, entonces el producto escalar es justamente la proyección. De este modo:

\[\left| {\vec u} \right| = 1 \Rightarrow \vec u \cdot \vec v = {p_{\vec u}}\left( {\vec v} \right)\quad;\quad\left| {\vec v} \right| = 1 \Rightarrow \vec u \cdot \vec v = {p_{\vec v}}\left( {\vec u} \right)\]

Es más habitual definir el producto escalar de dos vectores de la siguiente manera:

\[\vec u \cdot \vec v = \left| {\vec u} \right|\left| {\vec v} \right|\cos \alpha\qquad(3)\]

donde lo único que se ha hecho es sustituir en \((2)\) las relaciones dadas en \((1)\).

Propiedades del producto escalar de vectores

El producto escalar de dos vectores es un número real (por eso recibe el nombre de escalar). Además, el producto escalar de dos vectores es, a la vista de la fórmula (3), claramente conmutativo. Esto nos lleva, por (2), a que la razón entre los módulos de dos vectores es igual a la razón entre sus proyecciones:

\[\left| {\vec u} \right|{p_{\vec u}}\left( {\vec v} \right) = \left| {\vec v} \right|{p_{\vec v}}\left( {\vec u} \right) \Leftrightarrow \frac{{\left| {\vec u} \right|}}{{\left| {\vec v} \right|}} = \frac{{{p_{\vec v}}\left( {\vec u} \right)}}{{{p_{\vec u}}\left( {\vec v} \right)}}\]

De aquí se deduce que módulos iguales y proyecciones iguales son cosas equivalentes (como es natural):

\[\left| {\vec u} \right| = \left| {\vec v} \right| \Leftrightarrow \frac{{\left| {\vec u} \right|}}{{\left| {\vec v} \right|}} = 1 \Leftrightarrow 1 = \frac{{{p_{\vec v}}\left( {\vec u} \right)}}{{{p_{\vec u}}\left( {\vec v} \right)}} \Leftrightarrow {p_{\vec u}}\left( {\vec v} \right) = {p_{\vec v}}\left( {\vec u} \right)\]

El producto escalar de un vector por sí mismo es igual a su módulo al cuadrado, pues el ángulo de un vector consigo mismo es cero. O bien porque la proyección de un vector sobre sí mismo es igual a la longitud o módulo de ese vector.

\[\vec u \cdot \vec u = \left| {\vec u} \right|\left| {\vec u} \right|\cos 0 = {\left| {\vec u} \right|^2}\quad;\quad\vec u \cdot \vec u = \left| {\vec u} \right|{p_{\vec u}}\left( {\vec u} \right) = \left| {\vec u} \right|\left| {\vec u} \right| = {\left| {\vec u} \right|^2}\qquad(4)\]

El producto escalar de dos vectores perpendiculares es igual a cero, ya que el coseno de un ángulo recto es cero. O bien porque la proyección de uno sobre el otro es un punto, que tiene longitud cero.

\[\vec u \bot \vec v \Rightarrow \vec u \cdot \vec v = \left| {\vec u} \right|\left| {\vec v} \right|\cos 90 = 0\quad;\quad\vec u \bot \vec v \Rightarrow \vec u \cdot \vec v = \left| {\vec u} \right|{p_{\vec u}}\left( {\vec v} \right) = \left| {\vec u} \right| \cdot 0 = 0\]

Recíprocamente, si el producto escalar de dos vectores no nulos es cero, entonces los vectores son perpendiculares.

\[\vec u,\vec v \ne 0\,\,,\,\,\vec u \cdot \vec v = 0 \Rightarrow \left| {\vec u} \right|\left| {\vec v} \right|\cos \alpha  = 0 \Rightarrow \cos \alpha  = 0 \Rightarrow \alpha  = 90 \Rightarrow \vec u \bot \vec v\]

Observa ahora la siguiente figura.

producto escalar 05

De ella se deduce que la proyección de la suma de dos vectores sobre otro es igual a la suma de las proyecciones de los dos vectores por separado. Entonces, usando la fórmula (2):

\[\vec u \cdot \left( {\vec v + \vec w} \right) = \left| {\vec u} \right|{p_{\vec u}}\left( {\vec v + \vec w} \right) = \left| {\vec u} \right|\left( {{p_{\vec u}}\left( {\vec v} \right) + {p_{\vec u}}\left( {\vec w} \right)} \right) = \left| {\vec u} \right|{p_{\vec u}}\left( {\vec v} \right) + \left| {\vec u} \right|{p_{\vec u}}\left( {\vec w} \right) = \vec u \cdot \vec v + \vec u \cdot \vec w\]

Lo que demuestra que el producto escalar cumple la propiedad distributiva respecto de la suma de vectores.

Una última propiedad del producto escalar es la llamada asociativa mixta, que relaciona el producto de números reales con el producto escalar:

\[k\left( {\vec u \cdot \vec v} \right) = k\left( {\left| {\vec u} \right|{p_{\vec v}}\left( {\vec u} \right)} \right) = \left( {k\left| {\vec u} \right|} \right){p_{\vec v}}\left( {\vec u} \right) = \left| {k\vec u} \right|{p_{\vec v}}\left( {\vec u} \right) = \left( {k\vec u} \right) \cdot \vec v\]

Fijemos ahora en el espacio vectorial \(\mathbb{R}^3\) un sistema de referencia ortonormal \(\left\{ {O\,;\,\left\{ {{\rm{i}}\,{\rm{,}}\,{\rm{j}}\,{\rm{,}}\,{\rm{k}}} \right\}} \right\}\), es decir, un origen de coordenadas en \(O\left( {0,0,0} \right)\), y una base de vectores \(\left\{ {{\rm{i}}\,{\rm{,}}\,{\rm{j}}\,{\rm{,}}\,{\rm{k}}} \right\}\) de módulo uno y perpendiculares dos a dos. Observemos que el producto escalar de dos vectores distintos de la base es cero, y que el producto escalar de un vector de la base consigo mismo es igual a uno.

\[{\rm{i}} \cdot {\rm{j}} = {\rm{i}} \cdot {\rm{k}} = {\rm{j}} \cdot {\rm{k}} = 0\ ;\ {\rm{i}} \cdot {\rm{i}} = {\left| {\rm{i}} \right|^2} = 1\ ;\ {\rm{j}} \cdot {\rm{j}} = {\left| {\rm{j}} \right|^2} = 1\ ;\ {\rm{k}} \cdot {\rm{k}} = {\left| {\rm{k}} \right|^2} = 1\]

Entonces, dados dos vectores \(\vec u\) y \(\vec v\), los podemos escribir como combinación lineal de los vectores de la base, es decir, existen \({u_1},{u_2},{u_3} \in \mathbb{R}\), \({v_1},{v_2},{v_3} \in \mathbb{R}\) tales que

\[\vec u = {u_1}{\rm{i}} + {u_2}{\rm{j}} + {u_3}{\rm{k}}\ ,\ \vec v = {v_1}{\rm{i}} + {v_2}{\rm{j}} + {v_3}{\rm{k}}\]

O lo que es lo mismo, un sistema de referencia nos permite escribir los vectores \(\vec u\) y \(\vec v\) en coordenadas respecto de la base:

\[\vec u = \left( {{u_1},{u_2},{u_3}} \right)\ ,\ \vec v = \left( {{v_1},{v_2},{v_3}} \right)\]

Vamos a hacer uso de la propiedad distributiva y de la asociativa mixta para obtener la expresión del producto escalar en función de las coordenadas de los vectores.

\[\vec u \cdot \vec v = \left( {{u_1}{\rm{i}} + {u_2}{\rm{j}} + {u_3}{\rm{k}}} \right) \cdot \left( {{v_1}{\rm{i}} + {v_2}{\rm{j}} + {v_3}{\rm{k}}} \right) =\]

\[= \left( {{u_1}{\rm{i}}} \right) \cdot \left( {{v_1}{\rm{i}}} \right) + \left( {{u_1}{\rm{i}}} \right) \cdot \left( {{v_2}{\rm{j}}} \right) + \left( {{u_1}{\rm{i}}} \right) \cdot \left( {{v_3}{\rm{k}}} \right) + \]

\[+ \left( {{u_2}{\rm{j}}} \right) \cdot \left( {{v_1}{\rm{i}}} \right) + \left( {{u_2}{\rm{j}}} \right) \cdot \left( {{v_2}{\rm{j}}} \right) + \left( {{u_2}{\rm{j}}} \right) \cdot \left( {{v_3}{\rm{k}}} \right) +\]

\[+ \left( {{u_3}{\rm{k}}} \right) \cdot \left( {{v_1}{\rm{i}}} \right) + \left( {{u_3}{\rm{k}}} \right) \cdot \left( {{v_2}{\rm{j}}} \right) + \left( {{u_3}{\rm{k}}} \right) \cdot \left( {{v_3}{\rm{k}}} \right) = \]

\[= \left( {{u_1}{v_1}} \right)\left( {{\rm{i}} \cdot {\rm{i}}} \right) + \left( {{u_1}{v_2}} \right)\left( {{\rm{i}} \cdot {\rm{j}}} \right) + \left( {{u_1}{v_3}} \right)\left( {{\rm{i}} \cdot {\rm{k}}} \right) + \]

\[+ \left( {{u_2}{v_1}} \right)\left( {{\rm{j}} \cdot {\rm{i}}} \right) + \left( {{u_2}{v_2}} \right)\left( {{\rm{j}} \cdot {\rm{j}}} \right) + \left( {{u_2}{v_3}} \right)\left( {{\rm{j}} \cdot {\rm{k}}} \right) + \]

\[+ \left( {{u_3}{v_1}} \right)\left( {{\rm{k}} \cdot {\rm{i}}} \right) + \left( {{u_3}{v_2}} \right)\left( {{\rm{k}} \cdot {\rm{j}}} \right) + \left( {{u_3}{v_3}} \right)\left( {{\rm{k}} \cdot {\rm{k}}} \right)\]

Seis de los nueve términos anteriores son cero pues los vectores de la base del sistema de referencia son perpendiculares. Además, el producto escalar de un elemento de la base consigo mismo es igual a uno. Por tanto:

\[\vec u \cdot \vec v = {u_1}{v_1} + {u_2}{v_2} + {u_3}{v_3}\qquad (5)\]

Ahora también podemos escribir el módulo de un vector dependiendo de sus coordenadas:

\[{\left| {\vec u} \right|^2} = \vec u \cdot \vec u \Rightarrow \left| {\vec u} \right| =  + \sqrt {\vec u \cdot \vec u}  \Rightarrow \left| {\vec u} \right| =  + \sqrt {u_1^2 + u_2^2 + u_3^2}\]

Algunas aplicaciones del producto escalar de vectores

Ángulo de dos rectas

De la definición de producto escalar de dos vectores podemos deducir el ángulo que forman ambos.

\[\vec u \cdot \vec v = \left| {\vec u} \right|\,\,\left| {\vec v} \right|\cos \alpha  \Rightarrow \cos \alpha  = \frac{{\vec u \cdot \vec v}}{{\left| {\vec u} \right|\,\,\left| {\vec v} \right|}} \Rightarrow \cos \alpha  = \frac{{{u_1}{v_1} + {u_2}{v_2} + {u_3}{v_3}}}{{\sqrt {u_1^2 + u_2^2 + u_3^2} \sqrt {v_1^2 + v_2^2 + v_3^2} }}\]

Si se trata de dos rectas, el ángulo formado entre ellas será el mismo que el que formen sus vectores directores.

Es posible que al hacer los cálculos el valor de   salga positivo o bien su valor sea negativo. En el primer caso el ángulo obtenido es agudo, y en el segundo es obtuso. Por convenio tomaremos como ángulo entre dos vectores o entre dos rectas el ángulo agudo. Para ello reescribiremos nuestra fórmula así:

\[\cos \alpha  = \frac{{\left| {{u_1}{v_1} + {u_2}{v_2} + {u_3}{v_3}} \right|}}{{\sqrt {u_1^2 + u_2^2 + u_3^2} \sqrt {v_1^2 + v_2^2 + v_3^2} }}\]

Al tomar el valor absoluto en el numerador, el valor de \(\cos\alpha\) siempre será positivo y, por tanto, \(\alpha\) será un ángulo agudo.

Observemos también que dos vectores serán perpendiculares (o dos rectas serán perpendiculares) cuando \(\cos\alpha=0\), es decir, cuando \({u_1}{v_1} + {u_2}{v_2} + {u_3}{v_3} = 0\). Simbólicamente:

\[r \bot s \Leftrightarrow \vec u \bot \vec v \Leftrightarrow \vec u \cdot \vec v = 0 \Leftrightarrow {u_1}{v_1} + {u_2}{v_2} + {u_3}{v_3} = 0\]

Vector perpendicular a un plano

Un vector \(\vec u\) es perpendicular a un plano \(\pi\) cuando \(\vec u\) es perpendicular a cualquier vector contenido en \(\pi\).

producto escalar 06

Dado el plano \(\pi\) de ecuación \(Ax + By + Cz + D = 0\) se tiene que \(\vec u = \left( {A,B,C} \right)\) son las coordenadas del un vector perpendicular al plano. Es decir: \(\vec u = \left( {A,B,C} \right) \bot \pi\).

Para demostrar que lo anterior es cierto se toman dos puntos cualesquiera \(M\left( {{m_1},{m_2},{m_3}} \right)\) y \(P\left( {{p_1},{p_2},{p_3}} \right)\) del plano \(\pi\), y efectuamos el producto escalar del vector \(\vec u = \left( {A,B,C} \right)\) con el vector \(\overrightarrow {MP}\). Si el resultado es cero, entonces \(\vec u \bot \overrightarrow {MP}\), con lo que \(\vec u \bot \pi\).

\[\vec u \cdot \overrightarrow {MP}  = \left( {A,B,C} \right) \cdot \left( {{p_1} - {m_1},{p_2} - {m_2},{p_3} - {m_3}} \right) = A\left( {{p_1} - {m_1}} \right) + B\left( {{p_2} - {m_2}} \right) + C\left( {{p_3} - {m_3}} \right) =\]

\[= \left( {A{p_1} + B{p_2} + C{p_3}} \right) - \left( {A{m_1} + B{m_2} + C{m_3}} \right) =  - D - \left( { - D} \right) = 0\]

La última igualdad es cierta porque tanto \(M\left( {{m_1},{m_2},{m_3}} \right)\) como \(P\left( {{p_1},{p_2},{p_3}} \right)\) son puntos del plano \(\pi\).

Ángulo de dos planos

Dados dos planos \(\pi\) y \(\pi'\), el ángulo formado por ambos es el que forman dos vectores contenidos en cada uno de los planos respectivos que sean perpendiculares a la recta intersección de los dos planos, es decir, el ángulo de los dos planos es el formado por los vectores \(\vec v\) y \(\vec v'\) de la figura.

Si \(\vec u\) y \(\vec u'\) son dos vectores perpendiculares a cada uno de los planos respectivos, podemos observar que el ángulo que forman  \(\vec u\) y \(\vec u'\) es el mismo que el de \(\vec v\) y \(\vec v'\).

producto escalar 07

Por lo tanto, si las ecuaciones de ambos planos son \(\pi  \equiv Ax + By + Cz + D = 0\) y \(\pi ' \equiv A'x + B'y + C'z + D' = 0\), entonces los vectores \(\vec u = \left( {A,B,C} \right)\) y \(\vec u' = \left( {A',B',C'} \right)\) son perpendiculares a los planos respectivos, luego:

\[\cos \alpha  = \frac{{\left| {AA' + BB' + CC'} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} \sqrt {A'{\,^2} + B'{\,^2} + C'{\,^2}} }}\]

Hemos tomado valor absoluto para obtener el ángulo agudo.

En particular dos planos serán perpendiculares cuando \(\cos\alpha=0\), es decir, cuando \(AA' + BB' + CC' = 0\):

\[\pi  \bot \pi ' \Leftrightarrow \vec u \bot \vec u' \Leftrightarrow \vec u \cdot \vec u' = 0 \Leftrightarrow AA' + BB' + CC' = 0\]

Ángulo entre recta y plano

Dada una recta \(r\) y un plano \(\pi\), el ángulo formado por ambos es aquel que forman \(r\) y \(r'\), donde \(r'\) es la proyección ortogonal de \(r\) sobre \(\pi\). La recta \(r'\) se obtiene como intersección de \(\pi\) con el plano que contiene a la recta \(r\) y es perpendicular a \(\pi\).

producto escalar 08

Si \(\vec v\) y \(\vec v'\) son dos vectores de \(r\) y \(r'\), el ángulo formado por \(r\) y \(\pi\) es el que forman \(\vec v\) y \(\vec v'\). Si \(\vec u\) es un vector perpendicular a \(\pi\), ese ángulo es complementario del formado por \(\vec u\) y \(\vec v\). Por lo tanto, si las ecuaciones de la recta son \(r \equiv \frac{{x - {a_1}}}{{{v_1}}} = \frac{{y - {a_2}}}{{{v_2}}} = \frac{{z - {a_3}}}{{{v_3}}}\), y la ecuación general o implícita del plano es \(\pi  \equiv Ax + By + Cz + D = 0\), tenemos que \(\text{sen}\,\alpha  = \cos \left( {\frac{\pi }{2} - \alpha } \right)\), luego

\[\text{sen}\,\alpha  = \frac{{\left| {A{v_1} + B{v_2} + C{v_3}} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} \sqrt {{v_1}^2 + {v_2}^2 + {v_3}^2} }}\]

Distancia de un punto a un plano, distancia entre dos planos paralelos y distancia entre una recta y un plano paralelos

Dados un punto \(P\) y un plano \(\pi\), se llama distancia de \(P\) a \(\pi\), \(d(P,\pi)\), a la distancia de \(P\) a \(M\), donde \(M\) es el punto de intersección de \(\pi\) con la recta que pasa por \(P\) y es perpendicular a \(\pi\).

producto escalar 09

Supongamos que el punto \(P\) tiene coordenadas \(P\left( {{p_1},\,\,{p_2},\,\,{p_3}} \right)\) y que el plano \(\pi\) tiene ecuación implícita \(\pi  \equiv Ax + By + Cz + D = 0\). Entonces la distancia de \(P\) a \(\pi\) viene dada por:

\[d\left( {P,\pi } \right) = \frac{{\left| {A{p_1} + B{p_2} + C{p_3} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\]

Para demostrarlo supongamos que \(M\left( {{m_1},\,\,{m_2},\,\,{m_3}} \right)\), \(\overrightarrow {MP}  = \left( {{p_1} - {m_1},\,\,{p_2} - {m_2},\,\,{p_3} - {m_3}} \right)\) y que \(\vec u = \left( {A,B,C} \right)\) es el vector perpendicular al plano. Obviamente \(d\left( {P,\,\,\pi } \right) = \left| {\overrightarrow {MP} } \right|\).

Pero, por un lado

\[\vec u \cdot \overrightarrow {MP}  = A\left( {{p_1} - {m_1}} \right) + B\left( {{p_2} - {m_2}} \right) + C\left( {{p_3} - {m_3}} \right)\]

y, por otro,

\[\vec u \cdot \overrightarrow {MP}  = \left| {\vec u} \right|\left| {\overrightarrow {MP} } \right|\cos \alpha  = \sqrt {{A^2} + {B^2} + {C^2}} \left| {\overrightarrow {MP} } \right|\left( { \pm 1} \right)\]

(el ángulo \(\alpha\) que forman \(\vec u\) y \(\overrightarrow {MP}\) es \(0\) o \(180\)).

Entonces, igualando ambas expresiones:

\[\pm \sqrt {{A^2} + {B^2} + {C^2}} \left| {\overrightarrow {MP} } \right| = A\left( {{p_1} - {m_1}} \right) + B\left( {{p_2} - {m_2}} \right) + C\left( {{p_3} - {m_3}} \right) \Rightarrow\]

\[\Rightarrow \left| {\overrightarrow {MP} } \right| =  \pm \frac{{A\left( {{p_1} - {m_1}} \right) + B\left( {{p_2} - {m_2}} \right) + C\left( {{p_3} - {m_3}} \right)}}{{\sqrt {{A^2} + {B^2} + {C^2}} }} =  \pm \frac{{A{p_1} + B{p_2} + C{p_3} - \left( {A{m_1} + B{m_2} + C{m_3}} \right)}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\]

Pero \(M \in \pi\), por lo que

\[A{m_1} + B{m_2} + C{m_3} + D = 0 \Rightarrow A{m_1} + B{m_2} + C{m_3} =  - D \Rightarrow \left| {\overrightarrow {MP} } \right| =  \pm \frac{{A{p_1} + B{p_2} + C{p_3} + D}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\]

y como la distancia es siempre un número no negativo, entonces

\[\left| {\overrightarrow {MP} } \right| = d(P,\pi ) = \frac{{\left| {A{p_1} + B{p_2} + C{p_3} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\]

Si dos planos son paralelos la distancia entre ambos será la distancia de un punto cualquiera de uno de ellos al otro. Del mismo modo, si una recta un plano son paralelos, la distancia de la recta al plano será la distancia de un punto cualquiera de la recta al plano.


Puedes descargar el artículo completo en pdf haciendo clic aquí.


Leer más ...

Cuatro problemas de trigonometría para profundizar

Se proponen a continuación cuatro problemas de trigonometría para profundizar un poco más en esta parte de las matemáticas. Estos apuntes de trigonometría os pueden servir para aprender o repasar los conceptos fundamentales. Estos mismos conceptos los podéis ver en la siguiente presentación sobre trigonometría.

Es importante intentar hacerlos antes de hacer clic sobre el desplegable para ver la resolución del problema correspondiente.

Problema 1

Dos vías de tren de \(1,4\) m de ancho se cruzan formando un rombo. Si un ángulo de corte es de \(40^\text{o}\), ¿cuánto valdrá el lado del rombo?

Este problema se puede resolver con cierta facilidad si se realiza un dibujo adecuado.

problema trigonometria 1

Observa que las dos vías se cruzan en el rombo \(ABCD\), y que el triángulo \(ADE\) es claramente rectángulo. En este último triángulo conocemos el lado \(DE=1,4\ \text{m}\) (el ancho de las vías). Además hemos llamado \(x=AD\) al lado del rombo. Entonces:

\[\text{sen}\,40^{\text{o}}=\frac{DE}{AD}=\frac{1,4}{x}\Rightarrow x=\frac{1,4}{\text{sen}\,40^{\text{o}}}=\frac{1,4}{0,643}\approx2,18\]

Por tanto el lado del rombo mide, aproximadamente, \(2,18\) metros.

Problema 2

Para hallar la distancia entre dos puntos inaccesibles \(A\) y \(B\), fijamos dos puntos \(C\) y \(D\) tales que \(\overline{CD}=300\) m, y medimos los siguientes ángulos: \(\widehat{ADB}=25^\text{o}\), \(\widehat{BDC}=40^\text{o}\), \(\widehat{ACD}=46^\text{o}\) y \(\widehat{ACB}=32^\text{o}\). Calcula la distancia entre \(A\) y \(B\).

problemas trigonometria 01

Con estos datos podemos calcular los ángulos \(\widehat{CAD}=180^\text{o}-65^\text{o}-46^\text{o}=69^\text{o}\) y \(\widehat{CBD}=180^\text{o}-40^\text{o}-78^\text{o}=60^\text{o}\).

Calculamos ahora \(\overline{AD}\) en el triángulo \(ACD\). Para ello aplicamos el teorema de los senos.

\[\frac{\overline{AD}}{\text{sen}\,46^\text{o}}=\frac{300}{\text{sen}\,69^\text{o}}\Rightarrow \overline{AD}=\frac{300\cdot\text{sen}\,46^\text{o}}{\text{sen}\,69^\text{o}}\approx223,22\]

De manera similar calculamos \(\overline{BD}\) en el triángulo \(BCD\).

\[\frac{\overline{BD}}{\text{sen}\,78^\text{o}}=\frac{300}{\text{sen}\,60^\text{o}}\Rightarrow \overline{AD}=\frac{300\cdot\text{sen}\,78^\text{o}}{\text{sen}\,60^\text{o}}\approx338,84\]

Finalmente calculamos la distancia entre \(A\) y \(B\), \(\overline{AB}\), aplicando el teorema del coseno en el triángulo \(ABD\).

\[\overline{AB}^2=\overline{AD}^2+\overline{BD}^2-2\cdot\overline{AD}\cdot\overline{BD}\cdot\cos\,25^\text{o}\approx\]

\[\approx223,22^2+338,84^2-2\cdot223,22\cdot338,84\cdot0,91=27540,97\Rightarrow\]

\[\Rightarrow \overline{AB}=\sqrt{27540,97}=165,95\]

Por tanto, la distancia entre \(A\) y \(B\) es, aproximadamente, \(165,95\) metros.

Problema 3

En un círculo de \(15\) cm de radio, halla el área comprendida entre una cuerda de \(20\) cm de longitud y el diámetro paralelo a ella.

Hagamos un dibujo de la situación expresada en el enunciado del problema:

problema trigonometria 2

Podemos dividir la zona sombreada, cuya área queremos calcular, en tres partes, \(S_1\), \(S_2\) y \(S_3\).

\(S_2\) es un triángulo isósceles cuyos lados iguales miden \(15\) cm y el lado desigual mide \(20\) cm. El área de este triángulo, que llamaremos \(A_2\), es \(A_2=\dfrac{20 h}{2}=10h\), donde \(h\) es la altura correspondiente al lado desigual. Es fácil darse cuenta de que, por el teorema de Pitágoras, \(15^2=10^2+h^2\), de donde \(h=\sqrt{15^2-10^2}=11,18\) cm2. Por tanto \(A_2=10\cdot11,18=111,8\) cm2.

También, utilizando el teorema del coseno, podemos calcular en este mismo triángulo el ángulo \(\beta\):

\[20^2=15^+15^2-2\cdot15\cdot15\cdot\cos\beta\Rightarrow450\cos\beta=225+225-400\Rightarrow\]

\[\Rightarrow450\cos\beta=50\Rightarrow\cos\beta=1,11\Rightarrow \beta=83,62^{\text{o}}\]

Obsérvese ahora que los sectores circulares \(S_1\) y \(S_3\) son iguales y de ángulo fácil de calcular una vez conocido \(\beta\): \(\alpha=\dfrac{180-\beta}{2}=48,19^{\text{o}}\). Si llamamos \(A_1\) y \(A_3\) al área de estos dos sectores tenemos que:

\[A_1=A_3=\dfrac{\pi\cdot r^2}{360^{\text{o}}}\alpha=\dfrac{\pi\cdot15^2}{360^{\text{o}}}48,19^{\text{o}}=94,62\,\text{cm}^2\]

Por tanto el área que nos piden es:

\[A_1+A_2+A_3=94,62+111,8+94,62=301,04\,\text{cm}^2\]

Problema 4

Dos circunferencias son tangentes exteriormente y sus radios miden \(9\) m y \(4\) m. Halla el ángulo \(2\alpha\), que forman sus tangentes comunes.

Observa la siguiente figura:

problemas trigonometria 02

Leer más ...

8 usos de la trigonometría para el cálculo de alturas y distancias

Con unas nociones básicas de trigonometría se puede hacer uso de la misma para calcular alturas y distancias entre puntos en situaciones muy diversas. Presentamos aquí 8 usos de la trigonometría para el cálculo de alturas y distancias. Son aplicaciones prácticas en las que se supone que contamos con el material necesario para medir ciertos ángulos (ángulos verticales, sobre todo de elevación, y ángulos horizontales) como, por ejemplo, un teodolito. En Topografía, el estudio de instrumentos y aparatos de medición es fundamental, pero eso es materia de estudios superiores. En todo caso estos apuntes sobre instrumentos topográficos son muy completos para el que desee echarles un vistazo. Sin embargo, a un nivel de matemáticas en Bachillerato, lo que interesa es ver la manera de establecer un método para solucionar el problema que se plantea, usando nociones básicas de trigonometría, por ejemplo, el teorema de los senos y/o el teorema del coseno.

Usos de la trigonometría. Cálculo de alturas y distancias

Leer más ...

Usos de la trigonometría. Cálculo de alturas y distancias (VIII)

Ver artículo en formato imprimible (pdf) aquí

Distancia entre dos puntos inaccesibles

Deseamos calcular la distancia \(\overline{AB}=x\) entre dos puntos \(A\) y \(B\) a los que no tenemos acceso, tal y como se muestra en la figura.

trig13

Para ello medimos una base arbitraria \(\overline{CD}\), situada en el mismo plano que \(A\) y \(B\). Desde \(C\) medimos los ángulos \(\widehat{ACD}=\alpha\) y \(\widehat{BCD}=\beta\). Desde \(D\) medimos también los ángulos \(\widehat{CDB}=\gamma\) y \(\widehat{CDA}=\delta\). Con estos datos también podemos conocer el ángulo \(\widehat{CAD}=180^{\text{o}}-\alpha-\delta\) y el ángulo \(\widehat{CBD}=180^{\text{o}}-\beta-\gamma\).

El método a seguir consiste en calcular previamente \(\overline{AC}\) en el triángulo \(ACD\) aplicando el teorema de los senos:

\[\frac{\overline{AC}}{\text{sen}\,\widehat{CDA}}=\frac{\overline{CD}}{\text{sen}\,\widehat{CAD}}\Rightarrow\overline{AC}=\frac{\overline{CD}\cdot\text{sen}\,\delta}{\text{sen}(180^{\text{o}}-\alpha-\delta)}\]

A continuación se calcula \(\overline{BC}\) en el triángulo \(BCD\) aplicando otra vez el teorema de los senos:

\[\frac{\overline{BC}}{\text{sen}\,\widehat{BDC}}=\frac{\overline{CD}}{\text{sen}\,\widehat{CBD}}\Rightarrow\overline{BC}=\frac{\overline{CD}\cdot\text{sen}\,\gamma}{\text{sen}(180^{\text{o}}-\beta-\gamma)}\]

Por último calculamos \(\overline{AB}=x\) en el triángulo \(ABC\) aplicando el teorema del coseno:

\[x^2=\overline{AC}^2+\overline{BC}^2-2\cdot\overline{AC}\cdot\overline{BC}\cdot\cos(\alpha-\beta)\]

Ejemplo

Para calcular la distancia entre dos puntos inaccesibles \(A\) y \(B\), se ha medido una base \(\overline{CD}\) de 240 metros, situada en el mismo plano que \(A\) y \(B\); también se han medido los ángulos \(\widehat{DCA}=106^{\text{o}}\), \(\widehat{DCB}=39^{\text{o}}\), \(\widehat{CDB}=122^{\text{o}}\) y \(\widehat{CDA}=41^{\text{o}}\). Calcular la distancia entre \(A\) y \(B\).

Solución

trig14

Llamemos \(x\) a la distancia entre \(A\) y \(B\). En este caso, según los datos del problema \(\alpha=106^{\text{o}}\), \(\beta=39^{\text{o}}\), \(\gamma=122^{\text{o}}\) y \(\delta=41^{\text{o}}\). Calculemos \(\overline{AC}\) y \(\overline{BC}\).

\[\overline{AC}=\frac{\overline{CD}\cdot\text{sen}\,\delta}{\text{sen}(180^{\text{o}}-\alpha-\delta)}=\frac{240\cdot\text{sen}\text{sen}41^{\text{o}}}{\text{sen}33^{\text{o}}}\approxeq289,1\]

\[\overline{BC}=\frac{\overline{CD}\cdot\text{sen}\,\gamma}{\text{sen}(180^{\text{o}}-\beta-\gamma)}=\frac{240\cdot\text{sen}122^{\text{o}}}{\text{sen}19^{\text{o}}}\approxeq325,16\]

Finalmente calculamos \(x\) aplicando el teorema del coseno en el triángulo \(ABC\):

\[x^2=\overline{AC}^2+\overline{BC}^2-2\cdot\overline{AC}\cdot\overline{BC}\cdot\cos(\alpha-\beta)=\]

\[=289.1^2+325.16^2-2\cdot289.1\cdot625.16\cdot\cos37^{\text{o}}\approxeq333167,23\Rightarrow\]

\[\Rightarrow x=\sqrt{333167,23}\Rightarrow x\approxeq577,2\]

Por tanto, la distancia entre \(A\) y \(B\) es, aproximadamente, \(577,2\) metros.

Leer más ...

Usos de la trigonometría. Cálculo de alturas y distancias (VII)

Ver artículo en formato imprimible (pdf) aquí

Altura de un objeto situado sobre un montículo, desde un terreno horizontal sin obstáculos

Deseamos calcular la altura \(\overline{AB}=x\) de un objeto situado sobre un montículo o punto elevado, desde un terreno horizontal sin obstáculos en el que estamos situados, tal y como se muestra en la figura.

trig11

Elegimos un punto \(C\) arbitrario y medimos el ángulo de elevación de \(A\), que llamaremos \(\alpha\). Moviéndonos en el plano determinado por \(A\), \(B\) y \(C\) nos desplazamos hasta un punto \(D\) y medimos \(\overline{CD}=d\), desde donde calculamos los respectivos ángulos de elevación de \(A\) y de \(B\), a los que llamaremos \(\beta\) y \(\gamma\), respectivamente.

El método a seguir consiste en calcular \(\overline{AD}\) en el triángulo \(ACD\) aplicando el teorema de los senos. Téngase en cuenta que en el triángulo \(ACD\) conocemos \(\overline{CD}=d\) y dos ángulos, \(\widehat{ACD}=\alpha\) y \(\widehat{ADC}=180^{\text{o}}-\beta\), lo que significa que también podemos calcular el tercero de los ángulos: \(\widehat{CAD}=180^{\text{o}}-(\alpha+180^{\text{o}}-\beta)=\beta-\alpha\).

\[\frac{\overline{AD}}{\text{sen}\,\widehat{ACD}}=\frac{d}{\text{sen}\,\widehat{CAD}}\Rightarrow\overline{AD}=\frac{d\cdot\text{sen}\,\alpha}{\text{sen}(\beta-\alpha)}\]

Finalmente, con el resultado anterior, se calcula \(x\) en el triángulo \(ABD\) aplicando otra vez el teorema de los senos. En este triángulo conocemos un lado, \(\overline{AD}\) y dos ángulos, \(\widehat{ADB}=\beta-\gamma\) y \(\widehat{DAB}=90^{\text{o}}-\beta\). Al igual que anteriormente esta información permite calcular el tercero de los ángulos: \(\widehat{ABD}=180^{\text{o}}-(\beta-\gamma+90^{\text{o}}-\beta)=90^{\text{o}}+\gamma\).

\[\frac{x}{\text{sen}\,\widehat{ADB}}=\frac{\overline{AD}}{\text{sen}\,\widehat{ABD}}\Rightarrow x=\frac{\overline{AD}\cdot\text{sen}(\beta-\gamma)}{\text{sen}(90^{\text{o}}+\gamma)}\]

Ejemplo

Una columna está situada sobre un peñón. Desde un punto \(C\) la parte superior de la misma se ve con un ángulo de elevación de \(55^{\text{o}}\). Situándonos en un punto \(D\), 40 metros más cerca, se constata que dicho ángulo de elevación se transforma en \(80^{\text{o}}\) y que el ángulo de elevación a la base de la columna es de \(60^{\text{o}}\). ¿Cuál es la altura de la columna?

trig12

Solución

Si nos fijamos en la figura anterior, los datos que proporciona el enunciado del problema son los siguientes. \(\alpha=55^{\text{o}}\), \(\beta=80^{\text{o}}\), \(\gamma=60^{\text{o}}\) y \(d=40\) metros. Entonces, en el triángulo \(ACD\) tenemos:

\[\overline{AD}=\frac{d\cdot\text{sen}\,\alpha}{\text{sen}(\beta-\alpha)}=\frac{40\cdot\text{sen}\,55^{\text{o}}}{\text{sen}\,25^{\text{o}}}\approxeq77,53\]

Por tanto, en el triángulo \(ABD\):

\[x=\frac{\overline{AD}\cdot\text{sen}(\beta-\gamma)}{\text{sen}(90^{\text{o}}+\gamma)}=\frac{77.53\cdot\text{sen}\,20^{\text{o}}}{\text{sen}\,150^{\text{o}}}\approxeq53,03\]

Es decir, la altura \(\overline{AB}\) de la columna es, aproximadamente, 53,03 metros.

Leer más ...

Usos de la trigonometría. Cálculo de alturas y distancias (VI)

Ver artículo en formato imprimible (pdf) aquí

Altura de un punto de pie inaccesible desde un terreno horizontal con obstáculos

Deseamos calcular la altura \(\overline{AB}=x\) de un punto de pie inaccesible desde un terreno horizontal con obstáculos, tal y como se muestra en la figura (piénsese que la figura está dibujada en perspectiva).

trig9

Tomemos una base auxiliar \(\overline{CD}=d\). Desde \(C\) medimos el ángulo de elevación de \(A\), que llamaremos \(\alpha\), el ángulo \(\widehat{ACD}\), al que llamaremos \(\beta\) y, finalmente, desde \(D\) mediremos también el ángulo \(\widehat{ADC}\), al que llamaremos \(\gamma\).

El método a seguir consiste en calcular \(\overline{AC}\) en el triángulo \(ACD\) y luego calcular \(x\) en el triángulo rectángulo \(ABC\). Aplicando el teorema de los senos en el triángulo \(ACD\):

\[\frac{\overline{AC}}{\text{sen}\,\gamma}=\frac{d}{\text{sen}\,\widehat{CAD}}\Rightarrow\overline{AC}=\frac{d\cdot\text{sen}\,\gamma}{\text{sen}\,(180^{\text{o}}-\gamma-\beta)}\]

Finalmente, en el triángulo rectángulo \(ABC\) se tiene:

\[\text{sen}\,\alpha=\frac{x}{\overline{AC}}\Rightarrow x=\overline{AC}\cdot\text{sen}\,\alpha\]

Ejemplo

Desde un barco fondeado frente a la costa se desea calcular la altura \(\overline{AB}\) de una torre. Para ello, desde la proa \(C\), a 4 metros sobre el nivel del mar, se mide el ángulo de elevación de \(A\): \(7^{\text{o}}\), y \(\widehat{ACD}=85^{\text{o}}\). Asimismo, desde la popa \(D\), también a 4 metros sobre el nivel del mar, se mide el ángulo \(\widehat{ACD}=87^{\text{o}}\) (ver figura). Si la distancia entre la proa y la popa es \(\overline{CD}=60\) metros, calcular la altura de la torre.

trig10

Solución

Llamemos \(B\,'\) al punto de la torre situado al nivel de la cubierta del barco (4 metros sobre el nivel del mar) y que se toma como referencia para medir el ángulo de elevación de \(A\): \(\alpha=7^{\text{o}}\). Llamaremos \(x=\overline{AB\,'}\), con lo que la altura de la torre será \(\overline{AB}=4+x\). Según el enunciado tenemos que \(\beta=85^{\text{o}}\), \(\gamma=87^{\text{o}}\) y \(d=60\) metros.

Tenemos pues, aplicando la fórmula vista anteriormente en el triángulo \(ACD\), que:

\[\overline{AC}=\frac{d\cdot\text{sen}\,(180\text{\grad}-\gamma-\beta)}{\text{sen}\,\gamma}=\frac{60\cdot\text{sen}\,87^{\text{o}}}{\text{sen}\,8^{\text{o}}}\approxeq430,53\]

Por tanto:

\[x=\overline{AC}\cdot\text{sen}\,\alpha=\overline{AC}\cdot\text{sen}\,7^{\text{o}}\approxeq52,47\]

Es decir, la altura de la torre es, aproximadamente, \(\overline{AB}=4+x\approxeq56,47\) metros.

Leer más ...

Usos de la trigonometría. Cálculo de alturas y distancias (V)

Ver artículo en formato imprimible (pdf) aquí

Altura de un punto de pie inaccesible desde un terreno inclinado sin obstáculos

Deseamos calcular la altura \(\overline{AB}=x\) de un punto de pie inaccesible desde un terreno inclinado, tal y como se muestra en la figura.

trig7

Sea \(\gamma\) el ángulo de inclinación del terreno. Nos situamos en un punto \(C\) y calculamos el ángulo de elevación de \(A\), que lo llamaremos \(\alpha\). Sobre el plano que contiene el triángulo \(ABC\) medimos la distancia \(\overline{CE}=d\) y desde \(E\) volvemos a calcular el ángulo de elevación de \(A\), que llamaremos \(\beta\).

El método a seguir consiste en calcular \(overline{AC}\) en el triángulo \(ACE\) y a partir de aquí calcular \(x\) en el triángulo \(ABC\). Por un lado está claro que \(\widehat{ACE}=\alpha-\gamma\), y por otro que \(\widehat{CAE}=\beta-\alpha\). Esto último está menos claro. Veamos la demostración:

\[\widehat{CAE}=\widehat{CAB}-\widehat{DAB}=(90^{\text{o}}-\alpha)-(90^{\text{o}}-\beta)=\beta-\alpha\]

Obsérvese que con estos dos ángulos también se puede calcular el ángulo \(\widehat{CAE}\):

\[\widehat{CEA}=180^{\text{o}}-\widehat{ACE}-\widehat{CAE}=180^{\text{o}}-(\alpha-\gamma)-(\beta-\alpha)=180^{\text{o}}+\gamma-\beta\]

Ahora aplicamos el teorema de los senos en el triángulo \(ACE\):

\[\frac{\overline{AC}}{\text{sen}\,\widehat{CEA}}=\frac{d}{\text{sen}\,\widehat{CAE}}\Rightarrow\overline{AC}=\frac{d\cdot\text{sen}\,(180^{\text{o}}+\gamma-\beta)}{\text{sen}\,(\beta-\alpha)}\]

Finalmente, en el triángulo \(ABC\) se tiene:

\[\text{sen}\,\alpha=\frac{x}{\overline{AC}}\Rightarrow x=\overline{AC}\cdot\text{sen}\,\alpha\]

Ejemplo

El ángulo de elevación de una peña \(\overline{AB}\) mide \(47^{\text{o}}\). Después de caminar 1000 metros hacia ella, subiendo una pendiente inclinada \(32^{\text{o}}\) respecto de la horizontal, su ángulo de elevación es de \(77^{\text{o}}\). Hallar la altura de la peña con respecto al plano horizontal de la primera observación.

Solución

trig8

Llamemos \(x=\overline{AB}\) a la altura de la peña. En este caso tenemos que \(\alpha=47^{\text{o}}\), \(\beta=77^{\text{o}}\), \(\gamma=32^{\text{o}}\) y \(d=1000\). De los datos anteriores obtenemos los necesarios para aplicar la fórmula vista anteriormente: \(\widehat{CAE}=\beta-\alpha=77^{\text{o}}-47^{\text{o}}=30^{\text{o}}\), \(\widehat{CEA}=180^{\text{o}}+\gamma-\beta=180^{\text{o}}+32^{\text{o}}-77^{\text{o}}=135^{\text{o}}\).

\[\overline{AC}=\frac{d\cdot\text{sen}\,(180^{\text{o}}+\gamma-\beta)}{\text{sen}\,(\beta-\alpha)}=\frac{1000\cdot\text{sen}\,135^{\text{o}}}{\text{sen}\,30^{\text{o}}}\approxeq1414,21\]

Por tanto:

\[x=\overline{AC}\cdot\text{sen}\,\alpha=\overline{AC}\cdot\text{sen}\,47^{\text{o}}\approxeq1034,29\]

Es decir, la altura de la peña es de, aproximadamente, 1034,29 metros.

Leer más ...

Usos de la trigonometría. Cálculo de alturas y distancias (IV)

Ver artículo en formato imprimible (pdf) aquí

Altura de un punto de pie inaccesible desde un terreno horizontal sin obstáculos

Deseamos calcular la altura \(\overline{AB}=x\) de un punto de pie inaccesible, tal y como se muestra en la figura.

Altura de un punto de pie inaccesible desde un terreno horizontal sin obstáculos

Para ello elegimos un punto \(C\) y medimos el ángulo de elevación de \(A\), que lo llamaremos \(\alpha\). Avanzamos una distancia \(\overline{CD}=d\) y desde \(D\) volvemos a medir el ángulo de elevación de \(A\), que llamaremos \(\beta\).

El método a seguir consiste en calcular \(\overline{AC}\) en el triángulo \(ACD\) y luego calcular \(x\) en el triángulo \(ACB\) (o bien calcular \(\overline{AD}\) en el triángulo \(ACD\) y a continuación \(x\) en el triángulo \(ADB\)). Obsérvese en primer lugar que conocidos \(\alpha\) y \(\beta\) se puede calcular \(\gamma\):

\[\gamma=180^{\text{o}}-(\alpha+180^{\text{o}}-\beta)=\beta-\alpha\]

Ahora aplicamos el teorema de los senos en el triángulo \(ACD\):

\[\frac{\overline{AC}}{\text{sen}\,(180^{\text{o}}-\beta)}=\frac{d}{\text{sen}\,\gamma}\Rightarrow\overline{AC}=\frac{d\cdot\text{sen}\,(180^{\text{o}}-\beta)}{\text{sen},\gamma}\]

Finalmente, en el triángulo \(ACB\) se tiene:

\[\text{sen}\,\alpha=\frac{x}{\overline{AC}}\Rightarrow x=\overline{AC}\cdot\text{sen}\,\alpha\]

De una manera análoga podemos calcular la distancia \(\overline{CB}\) si nos interesa:

\[\cos\,\alpha=\frac{\overline{CB}}{\overline{AC}}\Rightarrow \overline{CB}=\overline{AC}\cdot\cos\,\alpha\]

Ejemplo

Desde un punto a ras de suelo se ve la azotea de un edificio con un ángulo de elevación de 48º. Avanzando 20 metros en dirección al edificio, el ángulo de elevación se incrementa en 14º. Calcular la altura del edificio.

Solución

Altura de un punto de pie inaccesible desde un terreno horizontal sin obstáculos

Llamemos \(x=\overline{AB}\) a la altura del edificio. En este caso tenemos que \(\alpha=48^{\text{o}}\), \(\beta=62^{\text{o}}\), \(d=20\) y \(\gamma=\beta-\alpha=62^{\text{o}}-48^{\text{o}}=14^{\text{o}}\) Entonces, según se ha explicado anteriormente:

\[\overline{AC}=\frac{d\cdot\text{sen}\,(180^{\text{o}}-\beta)}{\text{sen}\,\gamma}=\frac{20\cdot\text{sen}\,118^{\text{o}}}{\text{sen}14^{\text{o}}}\approxeq72,994\]

Por tanto:

\[x=\overline{AC}\cdot\text{sen}\,\alpha=\overline{AC}\cdot\text{sen}\,48^{\text{o}}\approxeq54,245\]

Es decir, la altura del edificio es de, aproximadamente, 54,245 metros.

Leer más ...
Suscribirse a este canal RSS

lasmatematicas.eu

Aplicaciones

Sígueme

webs de matemáticas