Menu
Cuadratura de un segmento de parábola

Cuadratura de un segmento de parábo…

Una forma de acercarse al...

Ejercicios de aplicaciones de las derivadas y del teorema del valor medio

Ejercicios de aplicaciones de las d…

Se proponen a continuaci&...

Aplicaciones de las derivadas. El teorema del valor medio

Aplicaciones de las derivadas. El t…

Ya hemos hablado en un pa...

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. R…

Cuando en las matem&aacut...

Series infinitas de números reales. Series convergentes

Series infinitas de números reales.…

Las sucesiones de n&uacut...

La paradoja de Zenón

La paradoja de Zenón

El filósofo griego...

Funciones continuas e inyectivas

Funciones continuas e inyectivas

Nuestro último teo...

El problema de la velocidad. Derivada de una función. Ejemplos de derivadas

El problema de la velocidad. Deriva…

Un problema relativo a ve...

Prev Next

Elementos filtrados por fecha: Sábado, 09 Enero 2016

3. El teorema fundamental del cálculo

En el artículo anterior hemos visto que el concepto de integral definida de una función \(f\) en un intervalo \([a,\,b]\), \(\int_a^b f(x)dx\), viene a representar el área comprendida entre la curva (gráfica de \(f\)), el eje \(X\) y las rectas verticales \(x=a\) y \(x=b\), tal y como se representa en la siguiente figura.

th fdtal calculo 01

Existe una estrecha relación entre la integral definida o, lo que es lo mismo, el cálculo del área bajo la curva, y la derivación. Esto, en principio, es bastante sorprendente. El teorema fundamental del cálculo pone de manifiesto la relación mencionada. Antes de enunciarlo demostraremos un resultado de interés, el teorema del valor medio para integrales. También introduciremos el concepto de función área de una función \(f\) en un intervalo cerrado.

Teorema del valor medio para integrales

Si \(f(x)\) es continua en \([a,\,b]\), entonces existe un punto \(c\in(a,\,b)\) tal que

\[\int_a^b f(x)dx=f(c)\cdot(b-a)\]

Demostración:

Sean \(m\) y \(M\) el mínimo y el máximo de \(f(x)\) en \([a,\,b]\). Entonces

\[m(b-a)\leq\int_a^b f(x)dx\leq M(b-a)\]

th fdtal calculo 03

Es decir:

\[m\leq\frac{1}{b-a}\int_a^b f(x)dx\leq M\]

Sean \(x_1\), \(x_2\) los puntos de \([a,\,b]\) tales que \(f(x_1)=m\), \(f(x_2)=M\). Entonces la igualdad anterior también se puede escribir así:

\[f(x_1)\leq\frac{1}{b-a}\int_a^b f(x)dx\leq f(x_2)\]

Aplicando el teorema de los valores intermedios existirá un punto \(c\in(x_1,\,x_2)\) tal que

\[f(c)=\frac{1}{b-a}\int_a^b f(x)dx\]

O lo que es lo mismo, hemos demostrado que existe \(c\in(a,\,b)\) tal que

\[\int_a^b f(x)dx=f(c)\cdot(b-a)\]

como queríamos demostrar.

El teorema del valor medio para integrales puede interpretarse geométricamente de la siguiente manera: existe un punto \(c\in(a,\,b)\) tal que el rectángulo de base \(b-a\) y altura \(f(c)\) tienen la misma área que la encerrada por la curva \(f\), el eje \(X\) y las rectas \(x=a\), \(x=b\).

th fdtal calculo 02

La función área

Dada una función \(f\), continua en un intervalo \([a,\,b]\), podemos calcular \(\int_a^c f\) para todo número \(c\in[a,\,b]\). Podemos entonces considerar una nueva función:

\[F(x)=\int_a^x f\, ,\ \forall\,x\in[a,\,b]\]

La función anterior es el área encerrada bajo la gráfica de \(f\) entre \(a\) y un punto variable \(x\).

Cuanto mayor sea la ordenada de \(f\), más rápidamente crece el área bajo ella, \(F\), y por tanto, mayor es \(F'\). Cuando \(f\) es negativa, lo es el área. Por tanto, \(F\) decrece y su derivada es negativa. Estas consideraciones intuitivas entre las funciones \(f\) y \(F'\) quedan patentes con mayor precisión en el siguiente teorema.

Teorema fundamental del cálculo

Si \(f\) es una función continua en \([a,\,b]\), entonces la función \(\displaystyle F(x)=\int_a^x f\), \(x\in[a,\,b]\), es derivable y se verifica que \(F'(x)=f(x)\).

Demostración:

Para hallar \(F'(x)\) calcularemos

\[\lim_{h\to0}\frac{F(x+h)-F(x)}{h}\]

El numerador es

\[F(x+h)-F(x)=\int_a^{x+h}f-\int_a^x f=\int_a^{x+h}f-\left(-\int_x^a f\right)=\int_x^a f+\int_a^{x+h}f=\int_x^{x+h}f\]

th fdtal calculo 04

Por el teorema del valor medio para integrales, al ser \(f\) continua en \([x,\,x+h]\), existe \(c\in[x,\,x+h]\) tal que

\[\int_x^{x+h}f=f(c)\cdot(x+h-x)=f(c)\cdot h\]

Por tanto:

\[F'(x)=\lim_{h\to0}\frac{F(x+h)-F(x)}{h}=\lim_{h\to0}\left[\frac{1}{h}\int_x^{x+h}f\right]=\lim_{h\to0}\left[\frac{1}{h}f(c)\cdot h\right]=\lim_{h\to0}f(c)\]

Como \(c\in[x,\,x+h]\), el límite \(\displaystyle\lim_{h\to0}f(c)=f(x)\), pues \(f\) es continua.

Por tanto, \(F'(x)=f(x)\), que es lo queríamos demostrar.

Veamos algunos ejemplos del uso del teorema fundamental del cálculo

Ejemplo 1

Podemos aplicar el teorema fundamental del cálculo para calcular la derivada de la función \(F(x)=\int_1^x(\ln t-2)dt\). Puesto que la función \(f(t)=\ln t-2\) es continua en todo su dominio, se tiene que \(F'(x)=\ln x-2\). Por otro lado, como \(F'(x)=0\Rightarrow\ln x-2=0\Rightarrow x=e^2\) y, además, \(F''(e^2)>0\), la función \(F\) tiene en el punto \(x=e^2\) un mínimo. Obsérvese que gracias al teorema fundamental del cálculo hemos obtenido el mínimo de la función sin necesidad de resolver la integral.

Ejemplo 2

Supongamos que queremos calcular el área encerrada por la gráfica de la función seno entre \(0\) y \(\pi\). Es decir, queremos hallar \(\int_0^\pi \text{sen}\,x\,dx\). Para ello llamaremos \(F(x)=\int_a^x\text{sen}\,t\,dt\)

th fdtal calculo 05

Por el teorema fundamental del cálculo, \(F'(x)=\text{sen}\,x\). Por tanto, al ser \(F\) una primitiva de la función seno:

\[F(x)=\int \text{sen}\,x\,dx=-\cos x+C\]

Como \(F(0)=\int_0^0\text{sen}\,t\,dt=0\), entonces \(-\cos0+C=0\), es decir, \(C=\cos0=1\). Por tanto tenemos que \(F(x)=-\cos x+1\). De este modo, el área que queremos calcular es:

\[\int_0^\pi\text{sen}\,x\,dx=F(\pi)=-\cos\pi+1=-(-1)+1=2\]

Por tanto el área que se buscaba es de \(2\ \text{u}^2\).

En el artículo siguiente veremos otro método (el que se usa habitualmente) para el cálculo de áreas: la regla de Barrow.

Finalmente reseñar que el teorema fundamental del cálculo afirma que la función área bajo la gráfica de \(f\), \(F(x)=\int_a^x f\), es una primitiva de \(f(x)\), ya que \(F'(x)=f(x)\). Esta es la razón por la que al cálculo de primitivas se le llama integración o cálculo de integrales, y se utiliza la expresión \(\int f(x)dx\) para designar una primitiva de la función \(f(x)\).

Obsérvese en la siguiente figura la relación entre \(F\) y \(f\) (haz clic sobre la figura para ver el movimiento):

En este ejemplo la gráfica de color rojo es \(f(x)=(x-3)^3+3(x-3)^2\) en el intervalo \([1,\,4]\). De manera similar a como se ha hecho en el ejemplo anterior, se puede comprobar con facilidad que \(F(x)=\dfrac{(x-3)^4}{4}+(x-3)^3+4\) (la gráfica de color azul). La ordenada de esta última función (el punto de color azul) nos da el área encerrada por la gráfica de \(f\), el eje \(X\) y las rectas verticales que pasan por las abscisas \(1\) y \(x\) (en color verde).


← 2. Integral definida

4. La regla de Barrow →

Leer más ...
Suscribirse a este canal RSS

lasmatematicas.eu

Aplicaciones

Sígueme

webs de matemáticas