Últimas noticias
Home » Matemáticas Bachillerato (página 3)

Matemáticas Bachillerato

Demostrando desigualdades

En matemáticas se hace mucho uso de las desigualdades numéricas y algebraicas. A veces tenemos que acotar una cantidad por otra para obtener un objetivo deseado. Por eso es buena cosa tener una técnica más o menos depurada en la demostración de desigualdades numéricas. Una técnica para demostrar una desigualdad numérica consiste en “trabajar para atrás” y luego dar la ...

Leer más »

Sistemas de ecuaciones no lineales

Cuando se estudian las matemáticas a un nivel básico en la secundaria, una de las cosas que primero se aprende a resolver es una ecuación de primer grado. A continuación se puede introducir sin mucha dificultad el concepto de sistema lineal de dos ecuaciones con dos incógnitas. La forma, digamos reducida, de un sistema de este tipo es: \[\begin{cases}a_1x+b_1y=c_1\\a_2x+b_2y=c_2\end{cases}\] Los ...

Leer más »

Dando en el blanco

Hoy hemos estado haciendo y discutiendo en clase un problema de probabilidad. Mis alumnos y alumnas llevan poco tiempo en esto de la probabilidad y es natural que, al principio, se sientan un poco desorientados. Les digo que es importante describir con palabras los sucesos de los cuales algo se nos dice en el enunciado del problema. Esto de la ...

Leer más »

Lotería, dados, azar, probabilidad: un par de problemas

Problema 1 Es conocido que en los sorteos ordinarios de la lotería hay \(5\) bombos con los números del \(0\) al \(9\). Pues bien: ¿cuál es la probabilidad de que en un sorteo ordinario de lotería toque un número capicúa comprendido entre el \(50\,000\) y el \(70\,000\)? Problema 2 Se sabe que la probabilidad de obtener un seis doble en ...

Leer más »

La raíz cuadrada

Es muy probable que muchos estudiantes de matemáticas de secundaria y bachillerato no tengan muy claro el concepto de raíz cuadrada. Lo digo porque cuando calculamos la “raíz de cuatro” a veces escribimos \(\sqrt{4}=2\) y otras veces escribimos \(\sqrt{4}=\pm2\) ¿Por qué esta confusión? Bueno, el problema radica en saber lo que estamos haciendo en cada momento. No es lo mismo ...

Leer más »

Números aproximados. Error absoluto y relativo

“La física es demasiado importante para ser dejada a los físicos.” David Hilbert Los números reales reflejan con absoluta precisión los resultados teóricos. Así por ejemplo, la longitud de una circunferencia de radio  \(\displaystyle \frac{\sqrt{5}}{3}\) es, exactamente, \(\displaystyle \frac{2\pi\sqrt{5}}{3}\), número real del cual no se puede dudar (en este artículo sobre radicales se proponen problemas donde sus soluciones son números reales ...

Leer más »

Notación científica y cifras significativas

“Cuando se olvide a Esquilo, Arquímedes será todavía recordado, porque los lenguajes mueren, pero las ideas matemáticas no. Puede que inmortalidad sea una palabra tonta, pero probablemente un matemático tiene la mejor oportunidad de alcanzar lo que sea que signifique.” G. H. Hardy, en A Mathematician’s Apology En ocasiones hemos de utilizar números muy grandes, como la distancia en kilómetros ...

Leer más »

El binomio de Newton. Ejercicios resueltos

Al final de estos apuntes sobre el binomio de Newton se propone una relación con 24 ejercicios. Los hay de muchos tipos. En concreto: Desarrollo de potencias de binomios cuyos términos sólo incluyen coeficientes enteros. Desarrollo de potencias de binomios cuyos términos incluyen radicales y fracciones. Escribir y simplificar el término que ocupa una posición determinada en el desarrollo de ...

Leer más »