Últimas noticias
Home » Matemáticas Bachillerato (página 10)

Matemáticas Bachillerato

Eje radical de dos circunferencias

Si tenemos dos circunferencias y buscamos los puntos cuya potencia respecto de las dos circunferencias es la misma, obtendremos una recta: el eje radical. Vamos a comprobar que, en efecto, dicho lugar geométrico es una recta. Si \(P(x_0\,,\,y_0)\) es un punto del lugar geométrico y \[c\equiv x^2+y^2+Dx+Ey+F=0\quad;\quad c’\equiv x^2+y^2+D’x+E’y+F’=0\] son las dos circunferencias, se ha de tener: \[\text{Pot}_c(P)=\text{Pot}_c'(P)\Leftrightarrow x_0^2+y_0^2+Dx_0+Ey_0+F=x_0^2+y_0^2+D’x_0+E’y_0+F’\] Pasando ...

Leer más »

Potencia de un punto respecto de una circunferencia

En la siguiente figura se han trazado, desde un punto \(P\), dos rectas secantes a la circunferencia, que la cortan en los puntos \(A_1\) y \(B_1\), \(A_2\) y \(B_2\), respectivamente. Los triángulos \(PB_1A_2\) y \(PB_2A_1\) son semejantes porque tienen un ángulo común (el ángulo \(\widehat{P}\)) y dos ángulos iguales (\(\widehat{A_1}\) y \(\widehat{A_2}\) por ser ángulos inscritos en la circunferencia que ...

Leer más »

La circunferencia

Definición La distancia constante que separa cualquier punto de la circunferencia del centro es el radio \(r\). Ecuación general Consideramos en el plano un sistema de referencia ortonormal \(\{O\,;\,\{\textbf{i},\,\textbf{j}\}\}\) (obsérvese la figura siguiente). Si \(C(a\,,\,b)\) es el centro de la circunferencia y \(P(x\,,\,y)\), un punto cualquiera de la misma, la definición nos dice (utilizamos la distancia entre dos puntos): \[d(C\,,\,P)=r\Leftrightarrow\sqrt{(x-a)^2+(y-b)^2}=r\] ...

Leer más »

Secciones planas de una superficie cónica

Una superficie cónica está engendrada por el giro de una recta \(g\) (llamada generatriz) alrededor de otra recta \(e\) (llamada eje) con la cual se corta en un punto \(V\) (vértice). La podemos ver representada en la siguiente figura. Si a una superficie cónica la cortamos por un plano que no pasa por el vértice, la intersección que resulta es ...

Leer más »

Lecturas complementarias

El lamento de un matemático Por Paul Lockhart. El lamento de un matemático es un artículo extraño y sorprendente. A pesar de ser ya un clásico, y de haber supuesto un auténtico bombazo en el mundo de la educación matemática, en Estados Unidos primero y después en todo el mundo, su autor, Paul Lockhart, nunca lo publicó. Sin embargo, a ...

Leer más »

Lugares geométricos

Lugar geométrico es un conjunto de puntos que cumplen una propiedad determinada, de un modo integrante y excluyente. Integrante significa que todos los puntos que la cumplen pertenecen al lugar geométrico. Excluyente, que todos los puntos que no la cumplen no están en el lugar geométrico. Una vez que se establece la propiedad geométrica que define el lugar geométrico, ha ...

Leer más »

Área del triángulo

Trabajaremos en el triángulo de la figura 11. En él, la ecuación de la recta \(r\) es \[r\equiv\frac{x-c_1}{b_1-c_1}=\frac{y-c_2}{b_2-c_2}\Leftrightarrow(b_2-c_2)x+(b_1-c_1)y+(b_1c_2-c_1b_2)=0\] El área \(S\) del triángulo \(ABC\) es \[S=\frac{1}{2}\cdot|\overrightarrow{CB}|\cdot|\overrightarrow{AH}|\] Pero \[|\overrightarrow{CB}|=\sqrt{(b_1-c_1)^2+(b_2-c_2)^2}\] \[|\overrightarrow{AH}|=\frac{|(b_2-c_2)a_1+(c_1-b_1)a_2+b_1c_2-c_1b_2|}{\sqrt{(b_1-c_1)^2+(b_2-c_2)^2}}\] Obsérvese que para hallar \(AH\) se ha utilizado la fórmula de la distancia de un punto a una recta vista en la lección anterior. Sustituyendo estas expresiones en la fórmula del área del ...

Leer más »

Distancia de un punto a una recta

La distancia de un punto \(P(p_1,p_2)\) a una recta \(r\equiv Ax+By+C=0\) es la longitud del segmento de perpendicular a la recta, trazada por el punto \(P\), comprendido entre éste y aquella. En la figura 10, \(d(P,r)=d(P,M)\). Para calcularla podemos hallar la recta s perpendicular a \(r\) que pasa por \(P\), resolver el sistema formado por ambas  rectas para hallar el punto ...

Leer más »

Ecuación normal de la recta. Cosenos directores

En la figura 9 hemos tomado la recta \[r\equiv Ax+By+C=0\] Sobre ella se consideran los puntos \(A(a_1,a_2)\) y \(X(x,y)\) que determinan el vector \[\overrightarrow{AX}=(x-a_1,y-a_2)\] El vector \(\vec{z}\) se ha construido unitario y perpendicular a \(r\). Por tanto tiene la misma dirección que el vector \(\vec{v}=(A,B)\). Para obtener \(\vec{z}\) basta multiplicar \(\vec{v}\) por el inverso de su módulo: \[\vec{z}=\frac{1}{|\vec{v}|}\cdot(A,B)=\left(\frac{A}{\sqrt{A^2+B^2}},\frac{B}{\sqrt{A^2+B^2}}\right)\] Ahora bien: \[\overrightarrow{AX}\perp\vec{z}\Rightarrow\frac{A\cdot(x-a_1)}{\sqrt{A^2+B^2}}+\frac{B\cdot(y-a_2)}{\sqrt{A^2+B^2}}=0\] O sea: ...

Leer más »

Paralelismo y perpendicularidad

Si dos rectas \(r\) y \(s\) de pendientes respectivas \(m_1\) y \(m_2\) son paralelas, forman un ángulo de \(0^{\circ}\). En ese caso: \[\text{tg}\,0^{\circ}=0\Rightarrow\frac{m_2-m_1}{1+m_2\cdot m_1}=0\Rightarrow m_2-m_1=0\Rightarrow m_2=m_1\] Esto nos lleva a un resultado conocido: dos rectas son paralelas si sus pendientes son iguales. \[r||s\Leftrightarrow m_r=m_s\] Este resultado está de acuerdo con la fórmula que veíamos en la sección 1 pues, efectivamente, si consideramos dos ...

Leer más »