Últimas noticias
Home » Matematicas ESO

Matematicas ESO

Operaciones con raíces. Radicales (2)

Instrucciones: Para practicar con estos ejercicios te recomiendo que los copies en tu cuaderno o en hojas aparte, donde debes intentar realizarlos. Una vez que hayas finalizado, comprueba las soluciones haciendo click en el lugar correspondiente. Por cierto, son prácticamente idénticos a los de la relación número 1 de radicales. Repasa aquella primero, incluso con sus soluciones y observaciones. Así ...

Leer más »

El radián

Cuando se comienza a trabajar la trigonometría, la medida de los ángulos que se utiliza es el grado sexagesimal. Esta medida proviene de la antigua Babilonia. Los babilonios supusieron, en un principio, que el año tenía 360 días y tomaron como medida angular “el recorrido diario del sol alrededor de la Tierra”. Esta forma de medir ha perdurado hasta nuestros ...

Leer más »

Cinco fórmulas para obtener el área de un triángulo

Consideremos el triángulo de la figura siguiente: Sabemos que el área o superficie \(S\) del mismo es la mitad del producto de una base por la altura correspondiente, es decir, viene dada por la conocida fórmula “base por altura partido por dos”: Observemos que en el triángulo rectángulo \(BHC\), se cumple que \(\text{sen}\,C=\dfrac{h}{a}\), es decir, \(h=a\cdot\text{sen}\,C\). Poniendo esta igualdad en ...

Leer más »

Funciones polinómicas

Una función polinómica, como su nombre indica, está definida mediante un polinomio, es decir: \[f(x)=a_nx^n+x_{n-1}x^{n-1}+a_{n-2}x^{n-2}+\ldots+a_2x^2+a_1x^1+a_0\] Es fácil darse cuenta de que el dominio de una función polinómica es todo el conjunto \(\mathbb{R}\) de los números reales, ya que tiene sentido sustituir la variable \(x\) por cualquier número real para obtener su imagen \(f(x)\). O sea, si \(f\) es una función ...

Leer más »

La función cuadrática o parabólica. La parábola

Ver artículo en formato imprimible (pdf) aquí Una función real de variable real es una función cuadrática o parabólica si su ecuación viene dada por un polinomio de segundo grado. Es decir, es una función de la forma \(f(x)=ax^2+bx+c\), donde \(a\), \(b\) y \(c\) son números reales y, además, \(a\neq0\) (indistintamente utilizaremos la notación \(y=ax^2+bx+c\)). La representación gráfica de una ...

Leer más »

La función lineal. Ecuación de la recta

Se dice que una función real de variable real es una función lineal si es de la forma \(f(x)=mx+n\) (indistintamente utilizaremos la escritura \(y=mx+n\)). Es decir, la ecuación de la función se corresponde con un polinomio de primer grado. La representación gráfica de una función lineal es siempre una recta. El coeficiente \(m\) recibe el nombre de pendiente de la recta ...

Leer más »

Problemas de matemáticas que se resuelven planteando ecuaciones

El álgebra, y en concreto las ecuaciones, son instrumentos que nos permiten resolver con facilidad muchos problemas que se plantean en la vida real. Aunque no existe una “receta mágica” para la resolución de problemas, sí que podemos sugerir unas técnicas y etapas para enfrentarnos a los problemas por difíciles que estos sean. Son las siguientes: Veamos algunos ejemplos típicos ...

Leer más »

Dificultades con los porcentajes. Aumentos y descuentos. Impuestos y rebajas

Porcentajes. Aumentos y disminuciones porcentuales Una parte considerable del alumnado de secundaria (y también de la población en general) encuentra dificultades a la hora de hacer cálculos con porcentajes. No acaban de tener clara la idea de porcentaje, sobre todo la de porcentajes de aumento (aplicar un impuesto) y la de porcentaje de descuento (llevar a cabo una rebaja). O ...

Leer más »

Radicales. Racionalización de denominadores

Sabemos que la raíz de dos es un número irracional que tiene, por tanto, infinitas cifras decimales: \[\sqrt{2}=1,4142135623730950488\ldots\] Redondeado \(\sqrt{2}\) a las décimas tenemos la aproximación \[\sqrt{2}=1,4\] Aproximación en la que se comete un error absoluto menor que \(5\) centésimas. Es decir, una cota del error es \(0,05\) (para saber más sobre errores y valores aproximados haz clic aquí). Esta aproximación ...

Leer más »