Últimas noticias
Home » Geometría

Geometría

Ecuaciones trigonométricas

Antes de comenzar la lectura de este artículo es conveniente tener unas nociones básicas de trigonometría. Para ello puedes leer los siguientes apuntes de trigonometría (son sólo 10 páginas). También, si quieres, puedes ver esta presentación sobre trigonometría básica. Una ecuación trigonométrica es aquella en la que la incógnita está afectada por alguna razón trigonométrica o, lo que es lo ...

Leer más »

Resolución de triángulos

Partimos del conocimiento de las razones trigonoméricas de un ángulo agudo sobre un triángulo rectángulo. Es decir, conocemos que el seno de uno de los ángulos agudos de un triángulo rectángulo es “cateto opuesto dividido entre hipotenusa”, el coseno del ángulo es “cateto contiguo dividido entre hipotenusa” y la tangente del ángulo es “cateto opuesto dividido entre cateto contiguo”. \[\text{sen}\,\alpha=\frac{a}{c}\quad;\quad\cos\alpha=\frac{b}{c}\quad;\quad \text{tg}\,\alpha=\frac{a}{b}\] También ...

Leer más »

Aplicación de las progresiones geométricas a la cuadratura de hipérbolas infinitas

Consideremos la función \(y=\dfrac{1}{x^2}\), definida en el intervalo \([0,5\,,\,+\infty)\). Su gráfica es la siguiente: El área limitada por la curva anterior, el eje \(X\) y la recta \(x=\dfrac{1}{2}\) se puede ver representada en la figura dada a continuación. Con una suficiente formación en análisis matemático, se puede hallar el área anterior mediante el cálculo de la integral impropia \[\int_{1/2}^{\infty}\frac{1}{x^2}\,dx\] De ...

Leer más »

Expresiones, identidades y ecuaciones trigonométricas

En Matemáticas I (1º de Bachillerato) se trabaja mucho la demostración de identidades trigonométricas, la simplificación de expresiones en las que aparecen razones trigonométricas, la resolución de ecuaciones trigonométricas y de sistemas de ecuaciones trigonométricas. Veamos unos ejemplos. Identidades trigonométricas Demostrar las siguientes identidades trigonométricas: \[\frac{\cos x+\text{sen}\,x}{\cos x-\text{sen}\,x}-\frac{\cos x-\text{sen}\,x}{\cos x+\text{sen}\,x}=2\text{tg}\,2x\] \[\frac{\text{tg}\,x}{\cos^2x}=\frac{1+\text{tg}^2x}{\text{cotg}^2x}\] Expresiones trigonométricas Simplificar las siguientes expresiones trigonométricas: \[\frac{\text{sen}\,\alpha+\text{cotg}\,\alpha}{\text{tg}\,\alpha+\text{cosec}\,\alpha}\] \[2\text{tg}\,\alpha\cdot\cos^2\frac{\alpha}{2}-\text{sen}\,\alpha\] ...

Leer más »

El radián

Cuando se comienza a trabajar la trigonometría, la medida de los ángulos que se utiliza es el grado sexagesimal. Esta medida proviene de la antigua Babilonia. Los babilonios supusieron, en un principio, que el año tenía 360 días y tomaron como medida angular “el recorrido diario del sol alrededor de la Tierra”. Esta forma de medir ha perdurado hasta nuestros ...

Leer más »

Fórmulas trigonométricas

Razones trigonométricas de la suma de dos ángulos Vamos a obtener las razones trigonométricas del ángulo suma \(\alpha+\beta\) en función de las razones trigonométricas de \(\alpha\) y de \(\beta\). Para ello usaremos la siguiente figura, en la que se han representado los ángulos \(\alpha\), \(\beta\) y \(\alpha+\beta\). En el triángulo de color rojo \(OAB\), cuya hipotenusa \(\overline{OB}\) la tomamos como ...

Leer más »

Cinco fórmulas para obtener el área de un triángulo

Consideremos el triángulo de la figura siguiente: Sabemos que el área o superficie \(S\) del mismo es la mitad del producto de una base por la altura correspondiente, es decir, viene dada por la conocida fórmula “base por altura partido por dos”: Observemos que en el triángulo rectángulo \(BHC\), se cumple que \(\text{sen}\,C=\dfrac{h}{a}\), es decir, \(h=a\cdot\text{sen}\,C\). Poniendo esta igualdad en ...

Leer más »

Apuntes de Geometría para Matemáticas II

En los apuntes siguientes se trata, de manera esquemática (son “sólo” 13 páginas), todo el bloque de geometría de la materia Matemáticas II, de 2º de Bachillerato (modalidad de Ciencias y Tecnología). Los puedes descargar en un enlace al final de esta entrada. Los contenidos están divididos de la siguiente manera. Descárgalos aquí: Apuntes de geometría. Matemáticas II. 2º Bachillerato.

Leer más »