Últimas noticias
Home » Álgebra (página 3)

Álgebra

Resolución de ecuaciones (1)

Instrucciones: Para practicar con estos ejercicios de ecuaciones te recomiendo que los copies en tu cuaderno o en hojas aparte, donde debes intentar realizarlos. Una vez que hayas finalizado, comprueba las soluciones haciendo click en el lugar correspondiente. Hay ecuaciones de todo tipo: de primer grado, de segundo grado, bicuadradas, con denominadores y sin ellos, con radicales, etc. También se ...

Leer más »

Sistemas de ecuaciones no lineales

Cuando se estudian las matemáticas a un nivel básico en la secundaria, una de las cosas que primero se aprende a resolver es una ecuación de primer grado. A continuación se puede introducir sin mucha dificultad el concepto de sistema lineal de dos ecuaciones con dos incógnitas. La forma, digamos reducida, de un sistema de este tipo es: \[\begin{cases}a_1x+b_1y=c_1\\a_2x+b_2y=c_2\end{cases}\] Los ...

Leer más »

Problemas de matemáticas que se resuelven planteando ecuaciones

El álgebra, y en concreto las ecuaciones, son instrumentos que nos permiten resolver con facilidad muchos problemas que se plantean en la vida real. Aunque no existe una “receta mágica” para la resolución de problemas, sí que podemos sugerir unas técnicas y etapas para enfrentarnos a los problemas por difíciles que estos sean. Son las siguientes: Veamos algunos ejemplos típicos ...

Leer más »

La raíz cuadrada

Es muy probable que muchos estudiantes de matemáticas de secundaria y bachillerato no tengan muy claro el concepto de raíz cuadrada. Lo digo porque cuando calculamos la “raíz de cuatro” a veces escribimos \(\sqrt{4}=2\) y otras veces escribimos \(\sqrt{4}=\pm2\) ¿Por qué esta confusión? Bueno, el problema radica en saber lo que estamos haciendo en cada momento. No es lo mismo ...

Leer más »

Suma de los cubos de los \(n\) primeros números naturales. Una demostración algebraica y otra gráfica

En este artículo se deducía que la suma \(S_1=1+2+3+\ldots+n\) de los \(n\) primeros números naturales viene dada por la fórmula \[S_1=\frac{n(n+1)}{2}\] También deducíamos que la suma \(S_2=1^2+2^2+3^2+\ldots+n^2\) de los cuadrados de los \(n\) primeros números naturales es \[S_2=\frac{n(n+1)(2n+1)}{6}\] Un procedimiento similar permite deducir la suma \(S_3=1^3+2^3+3^3+\ldots+n^3\) de los cubos de los \(n\) primeros números naturales. Veámoslo. Para ello utilizaremos las dos ...

Leer más »

Eliminando denominadores de una ecuación

En las matemáticas de 4º de Educación Secundaria Obligatoria se suele proponer la resolución de ecuaciones de primer grado como la siguiente: \[\frac{3x+7}{24}-\frac{1-4x}{6}=-4-x-\frac{2x-5}{3}\] Para resolverla hay que eliminar los denominadores. Para ello se reducen todos los términos a común denominador, utilizando el mínimo común múltiplo de los denominadores. Siguen siendo demasiados los alumnos que cometen un error muy común. Veamos: ...

Leer más »

Números aproximados. Error absoluto y relativo

“La física es demasiado importante para ser dejada a los físicos.” David Hilbert Los números reales reflejan con absoluta precisión los resultados teóricos. Así por ejemplo, la longitud de una circunferencia de radio  \(\displaystyle \frac{\sqrt{5}}{3}\) es, exactamente, \(\displaystyle \frac{2\pi\sqrt{5}}{3}\), número real del cual no se puede dudar (en este artículo sobre radicales se proponen problemas donde sus soluciones son números reales ...

Leer más »

Notación científica y cifras significativas

“Cuando se olvide a Esquilo, Arquímedes será todavía recordado, porque los lenguajes mueren, pero las ideas matemáticas no. Puede que inmortalidad sea una palabra tonta, pero probablemente un matemático tiene la mejor oportunidad de alcanzar lo que sea que signifique.” G. H. Hardy, en A Mathematician’s Apology En ocasiones hemos de utilizar números muy grandes, como la distancia en kilómetros ...

Leer más »

El binomio de Newton. Ejercicios resueltos

Al final de estos apuntes sobre el binomio de Newton se propone una relación con 24 ejercicios. Los hay de muchos tipos. En concreto: Desarrollo de potencias de binomios cuyos términos sólo incluyen coeficientes enteros. Desarrollo de potencias de binomios cuyos términos incluyen radicales y fracciones. Escribir y simplificar el término que ocupa una posición determinada en el desarrollo de ...

Leer más »

ecuaciones, ecuaciones, ecuaciones

En matemáticas, saber resolver ecuaciones es fundamental. En las matemáticas de bachillerato una de las cosas que hacemos a principio de curso es repasar todos los tipos de ecuaciones que hemos aprendido durante la educación secundaria obligatoria. Incluso se aprenden algunos más, como las ecuaciones exponenciales, las ecuaciones logarítmicas y las ecuaciones trigonométricas. Aquí puedes descargar unos apuntes teóricos en ...

Leer más »