Home » Análisis (página 5)

Análisis

La existencia de los números irracionales

En las matemáticas de la Educación Secundaria Obligatoria se presentan los números irracionales como aquellos que no son racionales, es decir, aquellos que no se pueden poner en forma de fracción. Como es muy habitual hablar de la expresión decimal de una fracción (que es o bien decimal exacta o bien decimal periódica), se dice también de los irracionales que ...

Leer más »

El último axioma. El axioma del supremo

Hay conceptos matemáticos de los que apenas se habla en las matemáticas del Bachillerato, o bien se pasa de puntillas sobre ellos. Es cierto que “jugamos” con los números reales dando por hecho muchas propiedades de los mismos y eso está bien, pues de manera intuitiva el alumno no tiene porqué preguntarse algunas cosas realmente obvias. Por poner un par ...

Leer más »

El conjunto de los números naturales. Una definición rigurosa y algunas propiedades

Con la idea de abrir boca para empezar los estudios de matemáticas en bachillerato, en un artículo anterior se hablaba sobre la introducción al número real en la Secundaria Obligatoria. En particular se definía el conjunto de los números naturales, \(\mathbb{N}\), como aquel formado por aquellos números que surgen de manera natural por la necesidad que tiene el ser humano ...

Leer más »

Sucesiones acotadas. Propiedades de las sucesiones convergentes

En un artículo anterior se ha definido el concepto de sucesión y de sucesión convergente. A continuación demostraremos algunas propiedades de las sucesiones convergentes y que se utilizan a menudo en las matemáticas de bachillerato a la hora de calcular límites de funciones. Nos referimos a aquello de que el límite de la suma, producto o división es la suma, ...

Leer más »

Sucesiones de números reales. Sucesiones convergentes: límite de una sucesión

Tanto en la educación secundaria obligatoria como en el bachillerato se habla poco de las sucesiones de números reales. Si acaso se dedica una unidad didáctica a las progresiones aritméticas y a las progresiones geométricas. Puesto que las sucesiones de números reales y, sobre todo, el concepto de convergencia para dichas sucesiones, son fundamentales para el estudio de las funciones ...

Leer más »

La función de proporcionalidad inversa. La función hiperbólica. Hipérbolas

La función de proporcionalidad inversa es una función real de variable real cuya ecuación viene dada por \(f(x)=\dfrac{k}{x}\), donde \(k\) es un número real distinto de cero. La gráfica de la función de proporcionalidad inversa es una hipérbola. Es muy fácil darse cuenta de que si \(x\rightarrow\pm\infty\), entonces \(f(x)\rightarrow0\); y si \(x\rightarrow0\), entonces \(f(x)\rightarrow\pm\infty\). Es decir: \[\lim_{x\to\pm\infty}\frac{k}{x}=0\quad\text{;}\quad\lim_{x\to0}\frac{k}{x}=\pm\infty\] De lo anterior ...

Leer más »

Sobre funciones reales de variable real. Composición de funciones. Función inversa

Cuando en matemáticas hablamos de funciones pocas veces nos paramos a pensar en la definición rigurosa de función real de variable real, así como en las operaciones con funciones, en particular de la composición de funciones y el concepto de función inversa de una función en el sentido de la composición de funciones. En este artículo hablaremos sobre funciones y ...

Leer más »

Continuidad de una función en un intervalo. El teorema del valor intermedio

Ya hemos tratado en un artículo anterior el problema de la continuidad de una función. Ahora nos hemos de preguntar sobre las ventajas que, en análisis matemático, nos proporciona este hecho. Existen una serie de resultados importantes que nos dan propiedades fundamentales de las funciones continuas, sobre todo de las funciones definidas por intervalos. Lo pondremos de manifiesto en este ...

Leer más »

El teorema de los ceros de Bolzano

Continuidad de una función en un punto Sabemos que una función \(f\) es continua en un punto \(x=a\) cuando se cumplen las tres condiciones siguientes: La continuidad es una propiedad local. Lo que queremos decir con esto es que para estudiar la continuidad de una función en un punto nos interesa saber lo que ocurre “en las cercanías del punto”. ...

Leer más »

La regla de L’Hôpital y el cálculo de límites

La regla de L’Hôpital permite calcular límites que presentan la indeterminación “cero partido por cero”. Debemos enunciar la regla con rigor pues en ella hay que asegurarse de que las dos funciones que intervienen (la del numerador y la del denominador) son ambas derivables en un entorno del punto donde se quiere hallar el límite. Es decir, si \(f\) y ...

Leer más »