Menu
Cuadratura de un segmento de parábola

Cuadratura de un segmento de parábo…

Una forma de acercarse al...

Ejercicios de aplicaciones de las derivadas y del teorema del valor medio

Ejercicios de aplicaciones de las d…

Se proponen a continuaci&...

Aplicaciones de las derivadas. El teorema del valor medio

Aplicaciones de las derivadas. El t…

Ya hemos hablado en un pa...

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. R…

Cuando en las matem&aacut...

Series infinitas de números reales. Series convergentes

Series infinitas de números reales.…

Las sucesiones de n&uacut...

La paradoja de Zenón

La paradoja de Zenón

El filósofo griego...

Funciones continuas e inyectivas

Funciones continuas e inyectivas

Nuestro último teo...

El problema de la velocidad. Derivada de una función. Ejemplos de derivadas

El problema de la velocidad. Deriva…

Un problema relativo a ve...

Prev Next

Elementos filtrados por fecha: Sábado, 22 Junio 2013

El teorema del coseno

En la figura de abajo se representa un triángulo cualquiera, en el que vamos a considerar sus lados como representantes de vectores libres.

thcoseno02

Hagamos el siguiente producto escalar:

thcoseno03

Por distributividad se puede escribir:

thcoseno04

Por tanto, utilizando la definición de módulo de un vector y de producto escalar de dos vectores:

thcoseno05

La expresión anterior, usando la medida de los lados del triángulo, toma la forma:

thcoseno06

Fórmula que constituye el llamado teorema del coseno, que dice:

En cualquier triángulo, el cuadrado de uno de sus lados es igual a la suma de cuadrados de los otros dos, menos su doble producto por el coseno del ángulo que forman.

Como caso particular del teorema del coseno, resulta el conocido teorema de Pitágoras. Cuando A=90o, el teorema del coseno se convierte en:

thcoseno07

Es decir:

thcoseno08

Leer más ...

3. Ángulo de dos rectas

Al cortarse dos rectas aparecen cuatro ángulo, dos a dos iguales (figura 4).

angulorectas01

Se conviene en llamar ángulo de las rectas r y s a uno de los dos menores iguales que forman. Por tanto:

angulorectas02

y, entonces,

angulorectas03

El ángulo de dos rectas es el ángulo que forman sus vectores directores. Si las rectas son:

angulorectas04

angulorectas05 ,

el ángulo que forman se puede calcular despejando de la expresión del prodcuto escalar de dos vectores:

angulorectas06

Si usamos las componentes correspondientes:

angulorectas07

De acuerdo con lo que se ha establecido (el ángulo se encuentra entre cero y noventa grados), tomamos el numerador en valor absoluto y en el denominador, las raíces cuadradas positivas.

Ejemplo 5

Halla el ángulo que forman las rectas

angulorectas08


 

Los vectores directores de rs son, respectivamente:

angulorectas09

Entonces:

angulorectas10

Ejemplo 6

Las rectas

angulorectas11

se cortan en un punto A, que es vértice de un triángulo obtusángulo en A. Calcula el ángulo A de ese triángulo.


 

Los vectores directores de r y s son, respectivamente:

angulorectas12

Por tanto:

angulorectas13

Como el ángulo A es obtuso:

angulorectas14

← 2. Distancias entre puntos

4. Ecuación punto-pendiente. Otras ecuaciones de la recta →

Leer más ...

2. Distancias entre puntos

En primer lugar veamos la distancia de un punto \(A(x,\,y)\) al origen de una referencia ortonormal \((O\,;\,\{i,\,j\})\).

distpuntos01

En la figura 2, la distancia \(OA\) es el módulo del vector de posición \(OA=(x,\,y)\); es decir:

 distpuntos03

o sea:

 distpuntos04

Obsérvese cómo se obtiene lo mismo que al aplicar el teorema de Pitágoras en el triángulo de la figura 2.

Ahora calculamos, sobre la figura 3, la distancia \(AB\):

distpuntos02

distpuntos05

O sea:

distpuntos06

Obsérvese que se ha obtenido otra vez el mismo resultado que se obtiene al aplicar el teorema de Pitágoras en el triángulo de la figura 3.

Ejemplo 4

Calcula el perímetro \(P\) de un rombo, uno de cuyos lados es \(AB\), con \(A(2,\,15)\) y \(B(7,\,3)\).


distpuntos07

distpuntos08

← 1. Repaso de la recta en el plano afín

3. Ángulo de dos rectas →

Leer más ...

1. Repaso de la recta en el plano afín

Sobre la figura 1 recordamos las distintas formas de la recta en el plano afín.

recta 01 

Dado un punto \(A(a,\,b)\) siempre podemos trazar una recta \(r\) que pase por \(A\) en una determinada dirección. Si llamamos \(\vec{e}\) a la dirección de la recta o vector director de la recta, podremos generar cualquier punto \(X(x,\,y)\) de la recta mediante la ecuación

\[\overrightarrow{OX}=\overrightarrow{OA}+k\cdot\vec{e}\]

donde \(k\) es un número real y \(O\) es el origen de coordenadas (ver figura 1). Esta es la llamada ecuación vectorial de la recta.

Escribiendo en coordenadas la ecuación anterior, tenemos que \((x,\,y)=(a,\,b)+k\cdot(e_1,\,e_2)\), o lo que es lo mismo, \((x,\,y)=(a+k\cdot e_1,\,b+k\cdot e_2)\), de donde, igualando coordenadas, se obtienen las ecuaciones paramétricas de la recta:

\[\begin{cases}x=a+k\cdot e_1\\ y=b+k\cdot e_2\end{cases}\]

Despejando \(k\) de las ecuaciones paramétricas e igualando obtenemos la ecuación continua de la recta:

\[\frac{x-a}{e_1}=\frac{y-b}{e_2}\]

Si en la ecuación anterior eliminamos denominadores y pasamos todos los términos al primer miembro obtenemos la ecuación general de la recta:

\[Ax+By+Cz+D=0\]

Tomemos ahora dos rectas \(r\) y \(s\) en su forma general:

\[r\equiv Ax+By+Cz+D=0\quad\text{;}\quad s\equiv A'x+B'y+C'z+D'=0\]

Vamos a resumir las condiciones de corte (incidencia) y paralelismo.

Las rectas \(r\) y \(s\) son secantes, es decir se cortan en un punto \(P\) si:

\[r\cap s=\{P\}\Leftrightarrow\frac{A}{A'}\neq\frac{B}{B'}\]

Las rectas \(r\) y \(s\) son paralelas si:

\[r\left|\right|s\Leftrightarrow\frac{A}{A'}=\frac{B}{B'}\neq\frac{C}{C'}\]

Las rectas \(r\) y \(s\) son coincidentes si:

\[r\equiv s\Leftrightarrow\frac{A}{A'}=\frac{B}{B'}=\frac{C}{C'}\]

Ejemplo 1

Escribe en forma paramétrica, continua y general, la ecuación de la recta que pasa por el punto \(A(−1,3)\) y tiene un vector director \(\vec{e}=(2,5)\).


Las ecuaciones paramétricas son:

\[\begin{cases}x=-1+2k\\y=3+5k\end{cases}\]

Despejando \(k\) obtenemos las ecuación continua y eleminando denominadores y pasando todos los términos al primer miembro, la ecuación general de la recta:

\[r\equiv\frac{x+1}{2}=\frac{y-3}{5}\Leftrightarrow\]

\[\Leftrightarrow r\equiv5(x+1)=2(y-3)\Leftrightarrow r\equiv5x-2y+11=0\]

Ejemplo 2

Escribe en forma paramétrica, continua y general, la ecuación de la recta que pasa por los puntos \(A(3,1)\) y \(B(-2,4)\).


 Un vector director de ella es:

\[\vec{e}=\overrightarrow{AB}=(-2-3,\,4-1)=(-5,\,3)\]

Entonces, usando el punto \(A\), por ejemplo:

\[r\equiv\begin{cases}x=3-5k\\y=1+3k\end{cases}\Leftrightarrow\]

\[\Leftrightarrow r\equiv\frac{x-3}{-5}=\frac{y-1}{3}\Leftrightarrow\]

\[\Leftrightarrow r\equiv3(x-3)=-5(y-1)\Leftrightarrow r\equiv3x+5y-14=0\]

Ejemplo 3

Dadas las rectas:

\[r\equiv x+3y+m=0\quad\text{;}\quad s\equiv2x-ny+5=0\]

halla \(m\) y \(n\), para que:

• Sean paralelas.

• Se corten en el punto \(P(1,2)\).

• Sean coincidentes.


 Aplicaremos las condiciones de incidencia y paralelismo:

• Para que sean paralelas:

\[r\left|\right|s\Leftrightarrow\frac{1}{2}=\frac{3}{-n}\neq\frac{m}{5}\Rightarrow n=-6\ \text{;} \ m\neq\frac{5}{2}\]

• Para que se corten en el punto \(P(1,2)\):

\[r\cap s=P(2,\,1)\Rightarrow\begin{cases}2+3\cdot1+m=0\Rightarrow m=-5\\ 4-n\cdot1+5=0\Rightarrow n=9\end{cases}\]

• Para que sean coincidentes:

\[r\equiv s\Leftrightarrow\frac{1}{2}=\frac{3}{-n}=\frac{m}{5}\Rightarrow n=-6\ \text{;}\ m=\frac{5}{2}\]

2. Distancias entre puntos →

Leer más ...
Suscribirse a este canal RSS

lasmatematicas.eu

Aplicaciones

Sígueme

webs de matemáticas