Últimas noticias
Home » Archivo del Autor: Pedro Castro Ortega (página 4)

Archivo del Autor: Pedro Castro Ortega

La función lineal. Ecuación de la recta

Se dice que una función real de variable real es una función lineal si es de la forma \(f(x)=mx+n\) (indistintamente utilizaremos la escritura \(y=mx+n\)). Es decir, la ecuación de la función se corresponde con un polinomio de primer grado. La representación gráfica de una función lineal es siempre una recta. El coeficiente \(m\) recibe el nombre de pendiente de la recta ...

Leer más »

Integrales indefinidas. Cálculo de primitivas (II)

En la entrada anterior sobre integrales indefinidas se obtuvieron las siguientes: \[\int{\cos^2x\,dx}=\frac{x+\text{sen}\,x\cos x}{2}+C\] \[\int{\text{sen}^2x\,dx}=\frac{x-\text{sen}\,x\cos x}{2}+C\] \[\int{x\cos x\,dx}=x\,\text{sen}\,x+\cos x+C\] \[\int{x\,\text{sen}\,x\,dx}=-x\cos x+\text{sen}\,x+C\] \[\int{\text{sen}\,x\cos x\,dx}=\frac{\text{sen}^2x}{2}+C=-\frac{\cos^2x}{2}+C\]  Vamos a calcular un par de ellas más. Para ello utilizaremos algunas de las fórmulas anteriores. Si introduces la expresión x*(sin(x))^2 en WolframAlpha obtienes la integral indefinida: \[\int{x\,\text{sen}^2x\,dx}=\frac{1}{8}\left(2x(x-\text{sen}\,2x)-\cos2x\right)+C\] que es equivalente a la obtenida anterioremente ya que \[\frac{1}{8}\left(2x(x-\text{sen}\,2x)-\cos2x\right)=\frac{1}{8}(2x^2-2x\,\text{sen}\,2x-\cos2x)=\] ...

Leer más »

Integrales indefinidas. Cálculo de primitivas (I)

Utilizando distintos métodos de integración se resuelven muchas integrales al nivel de 2º de Bachillerato Científico-Técnico (en la materia de Matemáticas II). Las que siguen contienen senos y cosenos y una técnica común es utilizar el método de integración por partes. Hay otra forma más rápida de hacer esta integral, pero hemos de recordar una fórmula trigonométrica: \[\cos 2x=\cos^2x-\text{sen}^2x\Rightarrow\cos 2x=\cos^2x-(1-\cos^2x)\Rightarrow\] ...

Leer más »

Al-Juarismi

Bagdad, siglo VIII Una nueva civilización se acaba de abrir paso en la historia. Arrancó de Arabia hace dos siglos a partir de innumerables tribus nómadas que fueron aglutinadas por la fe de un profeta y el magnetismo de un libro revelado. Hoy, aquel incipiente estado se ha expandido hacia el este mirando a Oriente. Y también ha conquistado Jerusalén ...

Leer más »

Argumentos a favor del cálculo mental

Este artículo se ha tomado del libro “Festival matemático. 50 pasatiempos y curiosidades“, de George Szpiro Desde que Pitágoras pintaba sus triángulos en los suelos arenosos de Samos hace unos 2500 años, los docentes no han dejado de buscar los mejores métodos para enseñar matemáticas a sus alumnos. Encontramos un ejemplo de ello en un debate surgido entre los expertos ...

Leer más »

Problemas de matemáticas que se resuelven planteando ecuaciones

El álgebra, y en concreto las ecuaciones, son instrumentos que nos permiten resolver con facilidad muchos problemas que se plantean en la vida real. Aunque no existe una “receta mágica” para la resolución de problemas, sí que podemos sugerir unas técnicas y etapas para enfrentarnos a los problemas por difíciles que estos sean. Son las siguientes: Veamos algunos ejemplos típicos ...

Leer más »

Dificultades con los porcentajes. Aumentos y descuentos. Impuestos y rebajas

Porcentajes. Aumentos y disminuciones porcentuales Una parte considerable del alumnado de secundaria (y también de la población en general) encuentra dificultades a la hora de hacer cálculos con porcentajes. No acaban de tener clara la idea de porcentaje, sobre todo la de porcentajes de aumento (aplicar un impuesto) y la de porcentaje de descuento (llevar a cabo una rebaja). O ...

Leer más »

Demostrando desigualdades

En matemáticas se hace mucho uso de las desigualdades numéricas y algebraicas. A veces tenemos que acotar una cantidad por otra para obtener un objetivo deseado. Por eso es buena cosa tener una técnica más o menos depurada en la demostración de desigualdades numéricas. Una técnica para demostrar una desigualdad numérica consiste en “trabajar para atrás” y luego dar la ...

Leer más »