Menu
Distancia entre dos rectas que se cruzan. Perpendicular común

Distancia entre dos rectas que se c…

En un espacio de tres dim...

La regla de Cramer

La regla de Cramer

Consideremos un sistema d...

¿Necesitas ayuda con las matemáticas? ¿Piensas que nunca serás capaz de entenderlas?

¿Necesitas ayuda con las matemática…

Ahora puedes tener un pro...

Completando cuadrados. Aplicación al cálculo de primitivas o integrales indefinidas

Completando cuadrados. Aplicación a…

Supongamos que me piden c...

La Universidad Europea de Madrid (UEM)

La Universidad Europea de Madrid (U…

La Universidad Europea de...

Cuadratura de un segmento de parábola

Cuadratura de un segmento de parábo…

Una forma de acercarse al...

Prev Next

Funciones polinómicas

Una función polinómica, como su nombre indica, está definida mediante un polinomio, es decir:

\[f(x)=a_nx^n+x_{n-1}x^{n-1}+a_{n-2}x^{n-2}+\ldots+a_2x^2+a_1x^1+a_0\]

Es fácil darse cuenta de que el dominio de una función polinómica es todo el conjunto \(\mathbb{R}\) de los números reales, ya que tiene sentido sustituir la variable \(x\) por cualquier número real para obtener su imagen \(f(x)\). O sea, si \(f\) es una función polinómica, entonces \(\text{Dom}\,f(x)=\mathbb{R}\).

No hay ningún problema tampoco en admitir que toda función polinómica es continua, es decir, su gráfica se puede dibujar "sin levantar el lápiz del papel". Desde el punto de vista matemático esto quiere decir que el límite de la función en todo punto es igual que la imagen de la función en ese punto. Simbólicamente, si \(f\) es una función polinómica y \(a\in\mathbb{R}\), entonces

\[\lim_{x\rightarrow a}f(x)=f(a)\]

Casos particulares de funciones polinómicas son la función lineal y la función cuadrática.

Nos planteamos el problema de dibujar la gráfica de una función polinómica. Puesto que un polinomio de grado \(n\) tiene a los sumo \(n\) raíces reales, toda función polinómica cortará, a lo sumo, en \(n\) puntos al eje \(X\). Hallar estos puntos de corte no es nada fácil si el polinomio es de grado mayor o igual que tres. Pero sí afirmaremos que toda función polinómica de grado \(n\) se "dobla" o se "pliega" a lo sumo, \(n-1\) veces. Además, el punto de corte con el eje \(Y\) siempre será \((0,a_0)\), donde \(a_0\) es el término independiente del polinomio. Por otro lado, todas las funciones polinómicas se comportan de manera similar en el infinito, ya que:

\[\lim_{x\rightarrow\pm\infty}(a_nx^n+x_{n-1}x^{n-1}+\ldots+a_1x^1+a_0)=\lim_{x\rightarrow\pm\infty}a_nx^n=\pm\infty\]

Lo anterior quiere decir que, si dibujásemos la gráfica de una función polinómica de izquierda a derecha, la misma procedería de más o menos infinito y se alejaría hacia más o menos infinito. Es decir, las funciones polinómicas presentan ramas infinitas en más o menos infinito. ¿Qué hacen "entre medias"? Bueno, pues dependiendo del número de veces que "toquen" al eje \(X\) y del número de máximos o mínimos relativos que posean, tendrán comportamientos diversos. Veamos algunos ejemplos.

La función polinómica de grado tres más sencilla es \(f(x)=x^3\), que corta al eje \(X\) únicamente en el origen de coordenadas. Además, es una función impar pues \(f(-x)=-f(x)\), lo que quiere decir que es simétrica respecto del origen de coordenadas. Es fácil obtener su gráfica:

funcion polinomica 01

Obsérvese que la función "procede" de menos infinito y se "dirige hacia" más infinito ya que, respectivamente, \(\displaystyle\lim_{x\rightarrow-\infty}x^3=-\infty\) y \(\displaystyle\lim_{x\rightarrow+\infty}x^3=+\infty\).

Hagamos otro ejemplo. Consideremos la función \(f(x)=-3x^3+2x\). En este caso es fácil hallar los puntos de corte con los ejes:

\[-3x^3+2x=0\Leftrightarrow x(-3x^2+2)=0\Leftrightarrow\begin{cases}x=0\\x=\sqrt{\frac{2}{3}}\approx0,816\\x=-\sqrt{\frac{2}{3}}\approx-0,816\end{cases}\]

Además

\[\lim_{x\rightarrow-\infty}(-3x^3+2x)=\lim_{x\rightarrow+\infty}(-3x^3)=+\infty\]

\[\lim_{x\rightarrow+\infty}(-3x^3+2x)=\lim_{x\rightarrow-\infty}(-3x^3)=-\infty\]

De lo anterior deducimos que la función procede de más infinito, corta al eje \(X\) en \(-0,816\), \(0\), \(0,816\); y se escapa hacia menos infinito. Teniendo en cuenta lo anterior y sabiendo que es de grado tres, tendrá que "doblarse" dos veces y podremos dibujar aproximadamente su gráfica. De hecho la gráfica es la siguiente:

funcion polinomica 02

Consideremos por último la función polinómica \(f(x)=-2x^6-x^5+x^4-2x^3+2x+1\). ¿Qué podemos decir de ella? Primero, que procede de menos infinito y se dirige también hacia menos infinito ya que \(\displaystyle\lim_{x\rightarrow\pm\infty}f(x)=-\infty\). Segundo, que pasa por el punto \((0,1)\). Y tercero, que de lo anterior se deduce que debe cortar al eje \(X\) en, al menos, dos puntos. Lógico, ¿no? De hecho corta al eje \(X\) en, exactamente, dos puntos, pues la ecuación \(-2x^6-x^5+x^4-2x^3+2x+1=0\) tiene exactamente dos soluciones reales (WolframAlpha se encarga de facilitarnos el trabajo). La gráfica queda así:

funcion polinomica 03

El teorema de los ceros de Bolzano y el estudio de la monotonía y de los extremos de una función polinómica usando las derivadas (contenidos que se aprenden en 2º de Bachillerato), nos permitirá dibujar con ciertas garantías las funciones polinómicas de grado tres, incluso de grado cuatro. Para las funciones polinómicas de grado superior no podremos sino atisbar cómo podría ser su gráfica usando los métodos anteriores y haciendo una tabla de valores lo suficientemente grande. Menos mal que disponemos de potentes programas de representación gráfica de funciones para visualizar cualquier función polinómica, por ejemplo, desmos, con el que se han hecho las gráficas que aparecen en este artículo. Esto, en mis tiempos de estudiante de Bachillerato era, sencillamente, imposible.

Leer más ...

Otros 5 ejercicios sobre continuidad, límites y derivadas

Ejercicio 1

Sea la siguiente función

\[f(x)=\begin{cases}\displaystyle\frac{x+3a}{10}&\text{si}&x<0\\\displaystyle\frac{2x+1}{7x+5}&\text{si}& 0\leq x\leq1\\\displaystyle\frac{\sqrt{x+3}-2}{x-1}&\text{si}&x>1\end{cases}\]

Hallar el valor de \(a\) para que \(f\) sea continua en \(x=0\). Estudiar la continuidad de \(f\) en \(x=1\).

\[\begin{cases}\displaystyle\lim_{x\rightarrow0^-}f(x)=\lim_{x\rightarrow0^-}\frac{x+3a}{10}=\frac{3a}{10}\\\displaystyle\lim_{x\rightarrow0^+}f(x)=\lim_{x\rightarrow0^+}\frac{2x+1}{7x+5}=\frac{1}{5}=f(0)\end{cases}\]

Entonces, para que \(f\) sea continua en \(x=0\) debe de ocurrir que

\[\lim_{x\rightarrow0^-}f(x)=\lim_{x\rightarrow0^+}f(x)=f(0)\]

Por tanto:

\[\frac{3a}{10}=\frac{1}{5}\Rightarrow a=\frac{10}{15}=\frac{2}{3}\]

Estudiemos ahora la continudad de la función en \(x=1\).

Por un lado:

\[\lim_{x\rightarrow1^-}f(x)=\lim_{x\rightarrow1^-}\frac{2x+1}{7x+5}=\frac{3}{12}=\frac{1}{4}\]

Por otro lado:

\[\lim_{x\rightarrow1^+}f(x)=\lim_{x\rightarrow1^+}\frac{\sqrt{x+3}-2}{x-1}=\left[\frac{0}{0}\right]=\lim_{x\rightarrow1^+}\frac{(\sqrt{x+3}-2)(\sqrt{x+3}+2)}{(x-1)(\sqrt{x+3}+2)}=\]

\[=\lim_{x\rightarrow1^+}\frac{x+3-4}{(x-1)(\sqrt{x+3}+2)}=\lim_{x\rightarrow1^+}\frac{x-1}{(x-1)(\sqrt{x+3}+2)}=\lim_{x\rightarrow1^+}\frac{1}{\sqrt{x+3}+2}=\frac{1}{4}\]

Como los límites laterales son iguales, entonces existe el límite: \(\displaystyle\lim{x\rightarrow1}f(x)=\dfrac{1}{4}\). Además \(f(1)=\dfrac{1}{4}\). Por tanto \(\displaystyle\lim_{x\rightarrow1}f(x)=f(1)=\dfrac{1}{4}\), y \(f\) es continua en \(x=1\).

Ejercicio 2

Calcular los siguientes límites:

a) \(\displaystyle\lim_{x\rightarrow-\infty}\dfrac{-12x^2+7x+1}{(2x+1)(1-4x)}\) ; b) \(\displaystyle\lim_{x\rightarrow0^-}\left(\dfrac{2}{x}-\dfrac{3}{x+1}\right)\) ;

c) \(\displaystyle\lim_{x\rightarrow+\infty}\left(\sqrt{x^2+x}-\sqrt{x^2-x}\right)\) ; d) \(\displaystyle\lim_{x\rightarrow1}\dfrac{\sqrt{x}-\displaystyle\frac{1}{x}}{x-1}\)

a) \(\displaystyle\lim_{x\rightarrow-\infty}\dfrac{-12x^2+7x+1}{(2x+1)(1-4x)}=\lim_{x\rightarrow-\infty}\dfrac{-12x^2+7x+1}{-8x^2-2x-1)}=\dfrac{-12}{-8}=\dfrac{1}{4}\)

b) \(\displaystyle\lim_{x\rightarrow0^-}\left(\dfrac{2}{x}-\dfrac{3}{x+1}\right)=\lim_{x\rightarrow0^-}\dfrac{2(x+1)-3x}{x(x+1)}=\left[\dfrac{0}{0}\right]=-\infty\)

Pero es más fácil hacerlo así: \(\displaystyle\lim_{x\rightarrow0^-}\left(\dfrac{2}{x}-\dfrac{3}{x+1}\right)=-\infty-3=-\infty\)

c) \(\displaystyle\lim_{x\rightarrow+\infty}\left(\sqrt{x^2+x}-\sqrt{x^2-x}\right)=\left[\infty-\infty\right]\lim_{x\rightarrow+\infty}\dfrac{\left(\sqrt{x^2+x}-\sqrt{x^2-x}\right)\left(\sqrt{x^2+x}+\sqrt{x^2-x}\right)}{\sqrt{x^2+x}+\sqrt{x^2-x}}=\)

\(=\lim_{x\rightarrow+\infty}\dfrac{x^2+x-x^2+x}{\sqrt{x^2+x}+\sqrt{x^2-x}}=\lim_{x\rightarrow+\infty}\dfrac{2x}{\sqrt{x^2+x}+\sqrt{x^2-x}}=\dfrac{2}{1+1}=\dfrac{2}{2}=1\)

d) \(\displaystyle\lim_{x\rightarrow1}\dfrac{\sqrt{x}-\displaystyle\frac{1}{x}}{x-1}=\left[\dfrac{0}{0}\right]=\lim_{x\rightarrow1}\dfrac{x\sqrt{x}-1}{x(x-1)}=\lim_{x\rightarrow1}\dfrac{(x\sqrt{x}-1)(x\sqrt{x}+1)}{x(x-1)(x\sqrt{x}+1)}=\)

\(=\displaystyle\lim_{x\rightarrow1}\dfrac{x^3-1}{x(x-1)(x\sqrt{x}+1)}=\lim_{x\rightarrow1}\dfrac{(x-1)(x^2+x+1)}{x(x-1)(x\sqrt{x}+1)}=\lim_{x\rightarrow1}\dfrac{x^2+x+1}{x(x\sqrt{x}+1)}=\dfrac{3}{2}\)

Ejercicio 3

De la función siguiente calcular el dominio, los puntos de corte con los ejes y las asíntotas. Hacer una representación gráfica aproximada de la misma.

\[f(x)=\frac{x^3-27}{x^2-2x-15}\]

Las soluciones de \(x^2-2x-15=0\) son \(x=-3\) y \(x=5\). Por tanto \(\text{Dom}\,f=\mathbb{R}-\{-3\,,\,5\}\).

\(\dfrac{x^3-27}{x^2-2x-15}=0\Rightarrow x^3-27=0\Rightarrow x^3=27\Rightarrow x=\sqrt[3]{27}=3\). Por tanto el punto de corte con el eje \(X\) es \((3\,,\,0)\).

\(\dfrac{0^3-27}{0^2-2\cdot0-15}=\dfrac{-27}{-15}=\dfrac{9}{5}\), lo que quiere decir que el punto de corte con el eje \(Y\) es \(\left(0\,,\,\dfrac{9}{5}\right)\).

\(\displaystyle\lim_{x\rightarrow-3}\dfrac{x^3-27}{x^2-2x-15}=\left[\dfrac{-54}{0}\right]=\begin{cases}-\infty&si&x\rightarrow-3^-\\+\infty&si&x\rightarrow-3^+\end{cases}\)

\(\displaystyle\lim_{x\rightarrow5}\dfrac{x^3-27}{x^2-2x-15}=\left[\dfrac{98}{0}\right]=\begin{cases}-\infty&si&x\rightarrow5^-\\+\infty&si&x\rightarrow5^+\end{cases}\)

De lo anterior se deduce que \(x=-3\) y \(x=5\) son asíntotas verticales de la función.

\(\displaystyle\lim_{x\rightarrow\infty}\dfrac{x^3-27}{x^2-2x-15}=\begin{cases}+\infty&si&x\rightarrow+\infty\\-\infty&si&x\rightarrow-\infty\end{cases}\), lo que quiere decir que \(f\) no tiene asíntotas horizontales.

Al dividir \(x^3-27\) entre \(x^2-2x-15\) se obtiene de cociente \(x+2\), lo que significa que \(y=x+2\) es una asíntota oblicua de la función.

Representación gráfica:

desmos 09

Ejercicio 4

Hallar, usando la definición, la derivada de la función \(f(x)=\dfrac{x-3x^2}{1-2x^2}\) en el punto \(x=1\).

\(\displaystyle\lim_{x\rightarrow1}\dfrac{f(x)-f(1)}{x-1}=\lim_{x\rightarrow1}\dfrac{\displaystyle\frac{x-3x^2}{1-2x^2}-2)}{x-2}=\lim_{x\rightarrow1}\dfrac{\displaystyle\frac{x-3x^2-2(1-2x^2)}{1-2x^2}}{x-1}=\displaystyle\lim_{x\rightarrow1}\dfrac{x-3x^2-2+4x^2}{(x-1)(1-2x^2)}=\)

\(=\displaystyle\lim_{x\rightarrow1}\dfrac{x^2+x-2}{(x-1)(1-2x^2)}=\lim_{x\rightarrow1}\dfrac{(x-1)(x+2)}{(x-1)(1-2x^2)}=\lim_{x\rightarrow1}\dfrac{x+2}{1-2x^2}=\dfrac{3}{-1}=-3\)

Entonces \(f'(1)=-3\).

Ejercicio 5

Hallar la derivada de las siguientes funciones y simplificar el resultado en la medida de lo posible.

a) \(f(x)=\dfrac{5x^2+2x^3-10x+1}{5}\)  ;  b) \(f(x)=\dfrac{x-3x^2}{1-2x^2}\)  ;

c) \(f(x)=x^2\cdot(\sqrt{x}-1)\)  ;  d) \(f(x)=\left(\dfrac{2}{x}-\dfrac{1}{x^3}\right)\cdot x^2\)

a) \(f(x)=\dfrac{5x^2+2x^3-10x+1}{5}=\dfrac{1}{5}(5x^2+2x-10x+1)\).

Entonces \(f'(x)=\dfrac{1}{5}(10x+6x^2-10)=2x+\dfrac{6}{5}x^2-2\)

Otra forma (más enrevesada, utilizando la regla de derivación de un cociente):

\(\displaystyle f'(x)=\dfrac{(10x+6x^2-10)\cdot5-(5x^2+2x^3-10x+1)\cdot0}{5^2}=\dfrac{50x+30x^2-50}{25}=2x+\dfrac{6}{5}x^2-2\)

b) Usando otra vez la regla de derivación de un cociente tenemos:

\(f'(x)=\dfrac{(1-6x)(1-2x^2)-(x-3x^2)(-4x)}{(1-2x^2)^2}=\dfrac{1-2x^2-6x+12x^2+4x^2-12x^3}{(1-2x^2)^2}=\dfrac{2x^2-6x+1}{(1-2x^2)^2}\)

c) \(f'(x)=2x(\sqrt{x}-1)+x^2\dfrac{1}{2\sqrt{x}}=2x\sqrt{x}-2x+\dfrac{x^2}{2\sqrt{x}}=\)

\(=\dfrac{4x^2-4x\sqrt{x}+x^2}{2\sqrt{x}}=\dfrac{5x^2-4x\sqrt{x}}{2\sqrt{x}}=\dfrac{5x^2\sqrt{x}-4x^2}{2x}=\dfrac{5x\sqrt{x}-4x}{2}\)

Otra forma, expresando previamente la función de otra manera equivalente.

\(f(x)=x^2\cdot(\sqrt{x}-1)=x^2\sqrt{x}-x^2=x^2\cdot x^{1/2}-x^2=x^{5/2}-x^2\Rightarrow\)

\(\Rightarrow f'(x)=\dfrac{5}{2}x^{3/2}-2x=\dfrac{5}{2}\sqrt{x^3}-2x=\dfrac{5x\sqrt{x}}{2}-2x=\dfrac{5x\sqrt{x}-4x}{2}\)

d) \(f(x)=\left(\dfrac{2}{x}-\dfrac{1}{x^3}\right)\cdot x^2=\dfrac{2x^2}{x}-\dfrac{x^2}{x^3}=2x-\dfrac{1}{x}\Rightarrow\)

\(\Rightarrow f'(x)=2-\dfrac{-1}{x^2}=\dfrac{2x^2+1}{x^2}\)

Hagámoslo de otra manera:

\(f(x)=\left(\dfrac{2}{x}-\dfrac{1}{x^3}\right)\cdot x^2=\dfrac{2x^2-1}{x^3}\cdot x^2=\dfrac{(2x^2-1)x^2}{x^3}=\dfrac{2x^2-1}{x}\Rightarrow\)

\(\Rightarrow f'(x)=\dfrac{4x\cdot x-(2x^2-1)\cdot1}{x^2}=\dfrac{4x^2-2x^2+1}{x^2}=\dfrac{2x^2+1}{x^2}\)

Leer más ...

5 ejercicios sobre continuidad, límites y derivadas

Ejercicio 1

Estudiar la continuidad de la siguiente función definida por trozos. En el caso de que no sea continua, decir el tipo de discontinuidad existente. Representarla gráficamente.

\[f(x)=\begin{cases}\displaystyle\frac{x^2-4}{x+2}&\text{si}&x<-2\\-2x-4&\text{si}& -2\leq x<1\\5&\text{si}& x=1\\\displaystyle\frac{-6}{2x-1}&\text{si}&x>1\end{cases}\]

\(f\) es continua en todo \(\mathbb{R}\) salvo, quizá, en \(x=-2\) y en \(x=1\). Esto es porque cada uno de los trozos en los que está definida \(f\) son funciones polinómicas y racionales, continuas en todo su dominio de definición. Estudiemos pues la continuidad en los puntos anteriores.

\(x=-2\)

Calculemos los límites laterales.

\[\lim_{x\rightarrow-2^-}f(x)=\lim_{x\rightarrow-2^-}\frac{x^2-4}{x+2}=\left[\text{INDETERMINACIÓN}\ \frac{0}{0}\right]=\]

\[=\lim_{x\rightarrow-2^-}\frac{(x+2)(x-2)}{x+2}=\lim_{x\rightarrow-2^-}(x-2)=-4\ \ \text{;}\]

\[\lim_{x\rightarrow-2^+}f(x)=\lim_{x\rightarrow-2^+}(-2x-4)=0\]

Como \(\displaystyle\lim_{x\rightarrow-2^-}f(x)\neq\lim_{x\rightarrow-2^+}f(x)\), entonces no existe \(\lim_{x\rightarrow-2}f(x)\) y, por tanto, \(f\) no es continua en \(x=-2\). En tal punto hay una discontinuidad de salto finito por ser los límites laterales finitos y distintos.

\(x=1\)

Calculemos los límites laterales.

\[\lim_{x\rightarrow1^-}f(x)=\lim_{x\rightarrow1^-}(-2x-4)=-6\ \ \text{;}\]

\[\lim_{x\rightarrow1^+}f(x)=\lim_{x\rightarrow1^+}\frac{-6}{2x-1}=-6\]

Como los límites laterales son iguales y finitos, entonces existe el límite cuando \(x\) tiende a \(1\) y tiene el mismo valor:

\[\lim_{x\rightarrow1}f(x)=-6\]

Sin embargo \(f(1)=5\). Por tanto

\[\lim_{x\rightarrow1}f(x)=-6\neq f(1)=5\]

Como el límite de la función en el punto no coincide con la imagen de la función en el punto, \(f\) no es continua en \(x=1\). Hay una discontinuidad evitable en dicho punto.

Representación gráfica de la función:

desmos 07

Ejercicio 2

Calcular los siguientes límites:

a) \(\displaystyle\lim_{x\rightarrow-\infty}\dfrac{x^2-3x^3+4x-5}{2x^2+4x-5}\)  ;  b) \(\displaystyle\lim_{x\rightarrow-2}\dfrac{3x^2-x^3+10x}{-x^2-5x-6}\)  ;

c) \(\displaystyle\lim_{x\rightarrow+\infty}\dfrac{x^2-\sqrt{x^4-2x^2}}{-x^2+2}\)  ;  d) \(\displaystyle\lim_{x\rightarrow1}\dfrac{\displaystyle\frac{1}{x}-1}{\sqrt{x}-1}\)

a) \(\displaystyle\lim_{x\rightarrow-\infty}\dfrac{x^2-3x^3+4x-5}{2x^2+4x-5}=\lim_{x\rightarrow-\infty}\dfrac{-3x^3}{2x^2}=\lim_{x\rightarrow-\infty}\dfrac{-3x}{2}=+\infty\)

Recuerda que si \(x\rightarrow\pm\infty\) el límite de una función racional también es \(\pm\infty\). El signo del infinito dependerá de los términos de mayor grado del numerador y del denominador que son los "dominantes" en un polinomio cuando \(x\rightarrow\pm\infty\).

b) \(\displaystyle\lim_{x\rightarrow-2}\dfrac{3x^2-x^3+10x}{-x^2-5x-6}=\left[\text{INDETERMINACIÓN}\ \frac{0}{0}\right]=\quad(*)\)

En este caso, para resolver la indeterminiación, hemos de simplificar la fracción algebraica. Para ello factorizamos el polinomio del numerador y del denominador.

\((*)\quad=\displaystyle\lim_{x\rightarrow-2}\dfrac{(x+2)(-x^2+5x)}{(x+2)(-x-3)}=\lim_{x\rightarrow-2}\dfrac{-x^2+5x}{-x-3}=\dfrac{-14}{-1}=14\)

c) \(\displaystyle\lim_{x\rightarrow+\infty}\dfrac{x^2-\sqrt{x^4-2x^2}}{-x^2+2}=\displaystyle\lim_{x\rightarrow+\infty}\dfrac{(x^2-\sqrt{x^4-2x^2})(x^2+\sqrt{x^4-2x^2})}{(-x^2+2)(x^2-\sqrt{x^4+2x^2})}=\)

\(=\displaystyle\lim_{x\rightarrow+\infty}\dfrac{x^4-x^4+2x^2}{(-x^2+2)(x^2-\sqrt{x^4+2x^2})}=\displaystyle\lim_{x\rightarrow+\infty}\dfrac{2x^2}{(-x^2+2)(x^2-\sqrt{x^4+2x^2})}=0\)

El último límite es igual a \(0\) porque el grado del numerador es menor que el grado del denominador (el grado del numerador es \(2\) y el del denominador es \(4\)). Esto ya se podía percibir en el límite de la función original, pero hemos multiplicado y dividido por el conjugado del numerador para que se se vea con más claridad.

d) \(\displaystyle\lim_{x\rightarrow1}\dfrac{\displaystyle\frac{1}{x}-1}{\sqrt{x}-1}=\displaystyle\lim_{x\rightarrow1}\dfrac{\displaystyle\dfrac{1-x}{x}}{\sqrt{x}-1}=\displaystyle\lim_{x\rightarrow1}\dfrac{1-x}{x\left(\sqrt{x}-1\right)}=\left[\text{INDETERMINACIÓN}\ \frac{0}{0}\right]=\quad(*)\)

Para resolver la indeterminación multiplicamos y dividimos por el conjugado de \(\sqrt{x}-1\)

\((*)\ =\displaystyle\lim_{x\rightarrow1}\dfrac{(1-x)\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\displaystyle\lim_{x\rightarrow1}\dfrac{(1-x)\left(\sqrt{x}+1\right)}{x(x-1)}=\displaystyle\lim_{x\rightarrow1}\dfrac{-(x-1)\left(\sqrt{x}+1\right)}{x(x-1)}=\)

\(=\displaystyle\lim_{x\rightarrow1}\dfrac{-\left(\sqrt{x}+1\right)}{x}=\dfrac{-2}{1}=-2\)

Ejercicio 3

De la función siguiente calcular el dominio, los puntos de corte con los ejes y las asíntotas. Hacer una representación gráfica aproximada de la misma.

\[f(x)=\frac{-2x^3+x+1}{x^2-2x-3}\]

Si igualamos a cero el denominador obtenemos los números reales que no pertenecen al dominio de la función. Como las soluciones de la ecuación \(x^2-2x-3=0\) son \(x=-1\) y \(x=3\), entonces \(\text{Dom}\,f=\mathbb{R}-\{-1\,,\,3\}\).

Calculemos ahora los límites de la función en los puntos anteriores pues, de obtener como resultado infinito en alguno de ellos o en ambos, estos darían lugar a asíntotas verticales.

\[\lim_{x\rightarrow-1}\frac{-2x^3+x+1}{x^2-2x-3}=\left[\frac{2}{0}\right]=\begin{cases}+\infty&\text{si}&x\rightarrow-1^-\\-\infty&\text{si}&x\rightarrow-1^+\end{cases}\]

\[\lim_{x\rightarrow3}\frac{-2x^3+x+1}{x^2-2x-3}=\left[\frac{-50}{0}\right]=\begin{cases}+\infty&\text{si}&x\rightarrow3^-\\-\infty&\text{si}&x\rightarrow3^+\end{cases}\]

De lo anterior se desprende que las rectas \(x=-1\) y \(x=3\) son asíntotas verticales. Además, las tendencias a la izquierda y a la derecha de tales puntos nos permiten dibujar las correspondientes ramas hacia \(+\infty\) o hacia \(-\infty\) de la función.

Por otro lado, como \(\displaystyle\lim_{x\rightarrow-\infty}\dfrac{-2x^3+x+1}{x^2-2x-3}=+\infty\) y \(\displaystyle\lim_{x\rightarrow+\infty}\dfrac{-2x^3+x+1}{x^2-2x-3}=-\infty\), \(f\) no tiene asíntotas horizontales. Pero sí que sabemos que en \(-\infty\) y en \(+\infty\) la función tiene ramas infinitas. Si la función tuviera alguna asíntota oblicua esas ramas infinitas serían asintóticas. Veámoslo a continuación.

De la división del polinomio \(-2x^3+x+1\) entre el polinomio \(x^2-2x-3\) se obtiene de cociente \(-2x-4\) y de resto \(-13x-11\). Por tanto:

\[-2x^3+x+1=(x^2-2x-3)(-2x-4)+(-13x-11)\Rightarrow\]

\[\Rightarrow\frac{-2x^3+x+1}{x^2-2x-3}=-2x-4+\frac{-13x-11}{x^2-2x-3}\Rightarrow\]

\[\Rightarrow\frac{-2x^3+x+1}{x^2-2x-3}-(-2x-4)=\frac{-13x-11}{x^2-2x-3}\]

De lo anterior se deduce que \(y=-2x-4\) es una asíntota oblicua. La última de las igualdades anteriores nos indica si la rama asintótica correspondiente está por encima o por debajo de tal asíntota oblicua. Si el signo de \(\frac{-13x-11}{x^2-2x-3}\) es mayor que cero para valores "muy grandes y positivos" la rama infinita estará por encima de la asíntota oblicua; en caso contrario, si el signo es menor que cero, la rama infinita estará por debajo de la asíntota oblicua. Algo similar ocurre si al mismo cociente le damos valores "muy grandes y negativos".

Finalmente, antes de dibujar la función, hallemos los puntos de corte con los ejes.

Si resolvemos la ecuación \(-2x^3+x+1=0\) obtendremos los puntos de coordenada \(y\) igual a cero y, por tanto, los puntos de corte con el eje \(X\). La ecuación anterior tiene una raíz entera: \(x=1\), con lo que \(-2x^3+x+1=0\Leftrightarrow(x-1)(-2x^2-2x-1)=0\). La ecuación \(-2x^2-2x-1=0\) no tiene soluciones reales. Por tanto el único punto de corte con el eje \(X\) es \((1\,,\,0)\). Por otro lado, si hacemos \(x=0\) obtenemos \(y=-\dfrac{1}{3}\), con lo que el punto de corte con el eje \(Y\) es \(\left(0\,,\,-\dfrac{1}{3}\right)\).

La representación gráfica de la función es la siguiente (incluye asíntotas):

desmos 08

Ejercicio 4

Hallar, usando la definición, la derivada de la función \(f(x)=\dfrac{x^2}{3x-1}\) en el punto \(x=2\).

La derivada en \(x=2\) será igual al valor del siguiente límite, caso de existir: \(\displaystyle\lim_{x\rightarrow2}\dfrac{f(x)-f(2)}{x-2}\). Es fácil calcular la imagen de \(2\): \(f(2)=\dfrac{2^2}{3\cdot2-1}=\dfrac{4}{5}\) Calculemos ya el límite anterior:

\[\lim_{x\rightarrow2}\dfrac{f(x)-f(2)}{x-2}=\lim_{x\rightarrow2}\dfrac{\displaystyle\frac{x^2}{3x-1}-\frac{4}{5}}{x-2}=\lim_{x\rightarrow2}\dfrac{\displaystyle\frac{5x^2-4(3x-1)}{5(3x-1)}}{x-2}=\]

\[=\lim_{x\rightarrow2}\dfrac{5x^2-12x+4}{5(3x-1)(x-2)}=\left[\frac{0}{0}\right]=\lim_{x\rightarrow2}\dfrac{(x-2)(5x-2)}{5(3x-1)(x-2)}=\]

\[=\lim_{x\rightarrow2}\dfrac{5x-2}{5(3x-1)}=\frac{5\cdot2-2}{5(3\cdot2-1)}=\frac{8}{25}\]

Por tanto \(f'(2)=\dfrac{8}{25}\).

Ejercicio 5

Hallar la derivada de las siguientes funciones:

a) \(f(x)=\dfrac{2x^2-3x-x^3}{3}\)  ;  b) \(f(x)=\dfrac{2-3x}{x^2-1}\)  ;

c) \(f(x)=x\cdot\left(\sqrt{x}+x\right)\)  ;  d) \(f(x)=\left(-3x+\dfrac{1}{x^2}\right)\cdot x\)

a) \(f(x)=\dfrac{2x^2-3x-x^3}{3}=\dfrac{1}{3}(2x^2-3x-x^3)\Rightarrow\)

\(\Rightarrow f'(x)=\dfrac{1}{3}(4x-3-3x^2)=\dfrac{-3x^2+4x-3}{3}=-x^2+\dfrac{4x}{3}-1\)

b) \(f(x)=\dfrac{2-3x}{x^2-1}\). Usemos la regla de derivación de un cociente.

\(f'(x)=\dfrac{-3\cdot(x^2-1)-(2-3x)\cdot2x}{(x^2-1)^2}=\dfrac{-3x^2+3-4x+6x^2}{(x^2-1)^2}=\dfrac{3x^2-4x+3}{(x^2-1)^2}\)

c) \(f(x)=x\cdot\left(\sqrt{x}+x\right)\). Aplicamos ahora la regla de derivación de un producto.

\(f'(x)=1\cdot(\sqrt{x}+x)+x\cdot\left(\dfrac{1}{2\sqrt{x}}+1\right)=\sqrt{x}+x+\dfrac{x}{2\sqrt{x}}+x=\sqrt{x}+\dfrac{x}{2\sqrt{x}}+2x\)

\(=\dfrac{2x+x+4x\sqrt{x}}{2\sqrt{x}}=\dfrac{3x\sqrt{x}+4x^2}{2x}=\dfrac{3\sqrt{x}+4x}{2}\)

d) \(f(x)=\left(-3x+\dfrac{1}{x^2}\right)\cdot x=-3x^2+\dfrac{x}{x^2}=-3x^2+\dfrac{1}{x}\). Sabemos que la derivada de \(y=\dfrac{1}{x}\) es \(y'=-\dfrac{1}{x^2}\). Entonces \(f'(x)=-6x-\dfrac{1}{x^2}=\dfrac{-6x^3-1}{x^2}\)

Leer más ...

Interpretando ecuaciones e inecuaciones matemáticas con desmos

En el último examen de matemáticas que han realizado mis alumnos de 1º de Bachillerato (Matemáticas I, modalidad de Ciencias y Tecnología) les propuse, entre otras cosas, que resolvieran un par de ecuaciones, un sistema de ecuaciones no lineal, una inecuación con la incógnita en el denominador, y un sistema de inecuaciones. Si representamos cada una de ellas con una aplicación gráfica, en este caso con desmos, podremos interpretar gráficamente las soluciones. Vamos a verlo.

Las ecuaciones

La primera ecuación propuesta fue \(\dfrac{x+4}{x-3}-\dfrac{1-2x}{x^2-x-6}=0\). Si se resuelve se obtienen como soluciones \(x_1=-7\) y \(x_2=-1\). Representando gráficamente la función \(\dfrac{x+4}{x-3}-\dfrac{1-2x}{x^2-x-6}\) se obtiene la gráfica de más abajo. Se aprecia (hay que fijarse un poco, eso sí) que la gráfica corta al eje de abscisas o eje \(X\) en los puntos \(-7\) y \(-1\), soluciones de la ecuación.

desmos 02

La segunda ecuación que propuse fue una ecuación irracional, es decir, una ecuación cuya incógnita se encuentra bajo el símbolo radical: \(2\sqrt{x+1}-3\sqrt{4x-3}+3=0\). Su solución es \(x=3\). De nuevo, representando gráficamente la función \(2\sqrt{x+1}-3\sqrt{4x-3}+3\), se observa que la gráfica corta al eje \(X\) en el punto \(x=3\).

desmos 03

En este caso me gustaría resaltar que la gráfica, en la parte superior, empieza o está detenida (según la dibujemos de izquierda a derecha o de derecha a izquierda), en un determinado punto. La coordenada \(x\) de este punto es, si nos fijamos bien, \(x=\dfrac{3}{4}=0,75\). Esto es porque una de las raíces de la ecuación original es \(\sqrt{4x-3}\). Sabemos que una raíz no tiene sentido si el radicando es menor que cero. En este caso \(4x-3<0\Leftrightarrow x<\dfrac{3}{4}\). Por eso, para puntos \(x\) menores que \(\dfrac{3}{4}\), desmos empieza a dibujar o no sigue dibujando. El radicando del otro radical que aparece en la ecuación es \(x+1\) y \(x+1<0\) si, y sólo si, \(x<-1\). Pero los puntos \(x\) menores que \(-1\) también lo son menores que \(\dfrac{3}{4}\) y quedan contenidos en la desigualdad. \(x<\dfrac{3}{4}\).

El sistema de ecuaciones

Se planteó también la resolución del sistema de ecuaciones \(\begin{cases}\displaystyle x+\frac{2}{y}=1\\ \displaystyle y+\frac{1}{x}=6\end{cases}\). Este s¡stema tiene dos parejas de soluciones: \(x_1=\dfrac{1}{2}\ \text{,}\ y_1=4\) ; \(x_2=\dfrac{1}{2}\ \text{,}\ y_2=3\). Para verlo gráficamente he seleccionado parte de las gráficas. La de color rojo corresponde a la primera ecuación, y la de color azul a la segunda.

desmos 04

La inecuación

La inecuación propuesta fue \(\dfrac{1}{x-3}+\dfrac{1}{x+1}>\dfrac{6}{5}\), cuya solución es, expresada en forma de intervalos, la siguiente: \(\left(-1\ ,\ -\dfrac{1}{3}\right)\cup(3\ ,\ 4)\). En la gráfica siguiente se ha representado la función \(f(x)=\dfrac{1}{x-3}+\dfrac{1}{x+1}-\dfrac{6}{5}\). Obsérvese que los "trozos" de gráfica que se encuentran por encima del eje \(X\), es decir, las soluciones de \(f(x)>0\), corresponden exactamente a la unión de los intervalos mencionados anteriormente.

desmos 05

El sistema de inecuaciones

El sistema de inecuaciones que se propuso en el examen fue \(\begin{cases}10-3x-x^2<0\\3x+5>-16\end{cases}\). Su solución es \((-7\ ,\ -5)\cup(2\ ,\ +\infty)\). En la gráfica se han representado las funciones \(f(x)=10-3x-x^2\) (una parábola) y \(g(x)=3x+5+16=3x+21\) (una recta). La solución del sistema se interpreta de la siguiente manera: son los trozos de ambas gráficas en los que simultáneamente es \(f(x)<0\) y \(g(x)>0\). Si se lanzan unas imaginarias líneas verticales que pasen por los puntos de corte con los ejes, se ve que esto ocurre exactamente en los intervalos solución del sistema.

desmos 06

Finalmente, para apreciar con mayor calidad visual todo lo comentado anteriormente puedes acudir a todas las gráficas en el siguiente enlace. En el panel de la izquierda están las ecuaciones (números 1 y 2), el sistema de ecuaciones (números 3 y 4), la inecuación (número 5) y el sistema de inecuaciones (números 6 y 7). Puedes seleccionar los números correspondientes en el citado panel para obtener una visualización adecuada de estas situaciones.

A modo de conclusión

Creo que es importante que los alumnos sepan asociar a las soluciones de una ecuación, de un sistema de ecuaciones, de una inecuación o de un sistema de inecuaciones, su visualización gráfica. Esto les ayudará también a relacionar dos partes de las matemáticas aparentemente disociadas para ellos: el álgebra y el análisis. Cuando hagan el estudio gráfico de una función rápidamente asociarán los puntos de corte con el eje de abscisas de la función \(y=f(x)\) con las soluciones de la ecuación \(f(x)=0\). La resolución de ecuaciones tendrá un sentido gráfico. Muchas situaciones reales llevan asociados modelos matemáticos que, con la ayuda de una aplicación como desmos, se pueden representar gráficamente. A veces la ecuación asociada a este modelo gráfico es bastante difícil de resolver, pero la visualización de la gráfica ayudará a darse cuenta de que las soluciones de tal ecuación son los cortes con el eje \(X\).

Leer más ...

La función de proporcionalidad inversa. La función hiperbólica. Hipérbolas

Ver artículo en formato imprimible (pdf) aquí

La función de proporcionalidad inversa es una función real de variable real cuya ecuación viene dada por \(f(x)=\dfrac{k}{x}\), donde \(k\) es un número real distinto de cero. La gráfica de la función de proporcionalidad inversa es una hipérbola. Es muy fácil darse cuenta de que si \(x\rightarrow\pm\infty\), entonces \(f(x)\rightarrow0\); y si \(x\rightarrow0\), entonces \(f(x)\rightarrow\pm\infty\). Es decir:

\[\lim_{x\to\pm\infty}\frac{k}{x}=0\quad\text{;}\quad\lim_{x\to0}\frac{k}{x}=\pm\infty\]

De lo anterior se deduce que las asíntotas de la función son el eje \(X\) (asíntota horizontal de ecuación \(y=0\)) y el eje \(Y\) (asíntota vertical de ecuación \(x=0\)).

Así pues, la gráfica de la función de proporcionalidad inversa es una hipérbola de asíntotas los ejes de coordenadas. La situación de las dos ramas de la hipérbola viene determinada por el signo de \(k\). Si \(k>0\) las ramas de la hipérbola se encuentran en el primer y tercer cuadrantes. Y si \(k<0\) las ramas de la hipérbola se encuentran en el segundo y cuarto cuadrantes. En la figura siguiente están representadas las funciones \(f(x)=\dfrac{2}{x}\) (en color rojo) y \(f(x)=\dfrac{-2}{x}\) (en color azul).

hiperbola02

Las funciones del tipo \(f(x)=\dfrac{a}{cx}\) no son distintas de las anteriores pues \(\dfrac{a}{cx}=\dfrac{a/c}{x}\), con lo que se trata de funciones de proporcionalidad inversa con \(k=\dfrac{a}{c}\).

Si la función es del tipo \(f(x)=\dfrac{a}{cx+d}\), su gráfica también es una hipérbola. En este caso:

\[\lim_{x\to\pm\infty}\frac{a}{cx+d}=0\quad\text{;}\quad\lim_{x\to-d/c}\frac{a}{cx+d}=\pm\infty\]

Ahora la asíntota horizontal vuelve a ser el eje \(X\) (\(y=0\)), y la asíntota vertical es la recta \(x=-\dfrac{d}{c}\).

Por ejemplo, la representación gráfica de la función \(f(x)=\dfrac{3}{-2x+6}\) es una hipérbola de asíntotas \(y=0\), \(x=-\dfrac{6}{-2}\Rightarrow x=3\):

hiperbola03

En general, las funciones del tipo \(f(x)=\dfrac{ax+b}{cx+d}\) (funciones racionales donde los polinomios del numerador y del denominador son de grado 1), son hipérbolas de asíntota horizontal \(y=\dfrac{a}{c}\) y asíntota vertical \(x=-\dfrac{d}{c}\).

La razón es porque, por un lado, (recuérdese cómo se resolvía, para las funciones racionales, la indeterminación "infinito partido por infinito").

\[\lim_{x\to\pm\infty}\frac{ax+b}{cx+d}=\frac{a}{c}\]

Y, por otro, porque

\[\lim_{x\to-d/c}\frac{ax+b}{cx+d}=\frac{k}{0}=\pm\infty\]

Teniendo en cuenta lo anterior y los puntos de corte con los ejes, es muy fácil hacerse una idea de la representación gráfica de una hipérbola del tipo general \(f(x)=\dfrac{ax+b}{cx+d}\).

Por ejemplo, imaginemos que nos piden representar la hipérbola de ecuación \(\dfrac{-3x+6}{x-1}\).

Según lo razonado anteriormente la asíntota horizontal de la hipérbola es \(y=-3\), y la asíntota vertical es \(x=1\). Además:

\[\lim_{x\to1}\frac{-3x+6}{x-1}=\begin{cases}-\infty\quad\text{si}\quad x\rightarrow1^-\\+\infty\quad\text{si}\quad x\rightarrow1^+\end{cases}\]

Por otro lado, el punto de corte con el eje \(X\) es \((2, 0)\), y el punto de corte con el eje \(Y\) es \((0, -6)\).

Con los datos anteriores es bastante fácil dibujar la hipérbola. En la gráfica siguiente está representada en color rojo. En color azul se han representado las asíntotas de la misma.

hiperbola04

Leer más ...

La función cuadrática o parabólica. La parábola

Ver artículo en formato imprimible (pdf) aquí

Una función real de variable real es una función cuadrática o parabólica si su ecuación viene dada por un polinomio de segundo grado. Es decir, es una función de la forma \(f(x)=ax^2+bx+c\), donde \(a\), \(b\) y \(c\) son números reales y, además, \(a\neq0\) (indistintamente utilizaremos la notación \(y=ax^2+bx+c\)). La representación gráfica de una función cuadrática o parabólica es, como su nombre indica, una parábola. La parábola siempre tiene un punto máximo o mínimo, llamado vértice. La recta vertical que pasa por el vértice recibe el nombre de eje de la parábola y divide a la parábola en dos partes simétricas. En general, si el coeficiente \(a\) es mayor que cero la parábola es cóncava ("se abre hacia arriba") y si es menor que cero es convexa ("se abre hacia abajo").

Para ver con más claridad la representación gráfica de la función cuadrática o de la parábola distinguiremos varios casos.

Caso 1

En este caso la ecuación de la función parabólica viene dada por \(f(x)=ax^2\). Estas parábolas siempre pasan por el origen de coordenadas, es decir, por el punto \((0,\ 0)\), punto que, además, es el vértice de la misma. El eje \(Y\) es por tanto el eje de la parábola (este tipo de funciones son pares: \(f(-x)=f(x)\)). En este caso son muy fáciles de representar, basta dar unos cuantos valores de \(x\) a la izquierda y derecha de cero. En la figura de más abajo se han representado las parábolas \(y=x^2\), \(y=\dfrac{1}{2}x^2\), \(y=2x^2\) (que se abren hacia arriba) y las parábolas \(y=-x^2\), \(y=-\dfrac{1}{2}x^2\), \(y=-2x^2\), que se abren hacia abajo y son un reflejo a través del eje \(X\) de las anteriores. Obsérvese que cuánto mayor es el valor absoluto de \(a\) más "estrecha" es la parábola.

parabola09

Caso 2

Este es un caso muy similar al anterior. La parábola ahora presenta la forma \(f(x)=ax^2+c\). Su gráfica es exactamente igual que la del caso anterior, sólo que se ha desplazado \(c\) unidades hacia arriba o hacia abajo (dependiendo de que \(c\) sea mayor o menor que cero). Por tanto el vértice pasa a ser ahora el punto \((0,\ c)\) y el eje de la parábola sigue siendo el eje \(Y\). Por ejemplo, las parábolas \(y=x^2+1\), \(y=x^2-1\) son exactamente iguales que la parábola \(y=x^2\) desplazadas respectivamente una unidad hacia arriba y una unidad hacia abajo (ver figura siguiente).

parabola08

Caso 3

Ahora la ecuación de la parábola adopta la forma \(y=ax^2+bx\). Resolviendo la ecuación \(ax^2+bx=0\) obtenemos dos soluciones: \(x=0\) y \(x=-\dfrac{b}{a}\). Esto quiere decir que la parábola \(y=ax^2+bx\) corta al eje \(X\) en dos puntos: \((0,\ 0)\) y \(\left(-\dfrac{b}{a},\ 0\right)\). Como estos dos puntos tienen la misma coordenada \(y\) (o la misma ordenada), deben ser simétricos respecto del eje de la parábola. Como el eje contiene al vértice de la parábola, la coordenada \(x\) (o abscisa) del vértice ha de ser el punto medio de \(0\) y \(-\dfrac{b}{a}\), es decir, \(x=-\dfrac{b}{2a}\) (esta es precisamente la ecuación del eje). La coordenada \(y\) del vértice se obtiene fácilmente sustituyendo el valor \(x=-\dfrac{b}{2a}\) en la ecuación de la parábola. Para representarla gráficamente basta representar los tres puntos anteriores (cortes con el eje \(X\) y vértice) y algunos puntos más alrededor de éstos. Veamos un ejemplo.

Sea la parábola de ecuación \(y=-\dfrac{1}{2}x^2+2x\). Para obtener los cortes con el eje \(X\) resolvamos la ecuación \(-\dfrac{1}{2}x^2+2x=0\).

\[-\dfrac{1}{2}x^2+2x=0\Rightarrow x\left(-\dfrac{1}{2}x+2\right)=0\Rightarrow\begin{cases}x=0\\-\dfrac{1}{2}x+2=0\end{cases}\Rightarrow\begin{cases}x=0\\x=4\end{cases}\]

Así pues los puntos de corte con el eje \(X\) son \((0,\ 0)\) y \((4,\ 0)\).

La coordenada \(x\) del vértice es \(x=-\dfrac{b}{2a}=-\dfrac{-2}{2\cdot(1/2)}=2\) (el punto medio de \(0\) y \(4\)). La coordenada \(y\) del vértice será entonces \(y=-\dfrac{1}{2}\cdot2^2+2\cdot2=-2+4=2\). Por tanto el vértice de la parábola es el punto \((2,\ 2)\).

Ahora vamos a construir una tabla de valores con algunos puntos más alrededor del vértice y de los puntos de corte con el eje \(X\). Por ejemplo, podemos pensar en los puntos \(x=-1\), \(x=1\), \(x=3\), \(x=5\). Así en total tendremos siete puntos, tres a la izquierda y tres a la derecha del vértice. Además, estos últimos simétricos respecto del eje de la parábola, con lo que solamente tendremos que hallar la imagen de uno de ellos, pues la del simétrico será la misma. Así la imagen de \(x=-1\) es \(y=-\dfrac{1}{2}\cdot(-1)^2+2\cdot(-1)=-\dfrac{1}{2}-2=-\dfrac{5}{2}\). Entonces, la imagen de \(x=5\) (el simétrico de \(x=-1\) respecto del eje de la parábola) también es \(y=-\dfrac{3}{2}\) (¡compruébese!). Procediendo de manera similar se construye una tabla de valores. La representación gráfica de la parábola a partir de la tabla es muy sencilla.

\[\begin{matrix}\hline x & -1 & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline y & -5/2 & 0 & 3/2 & 2 & 0 & 3/2 & -5/2 \\ \hline\end{matrix}\]

parabola11

Caso 4

Este es el caso más general. La ecuación de la parábola es \(y=ax^2+bx+c=0\). Este tipo de parábolas siempre cortan al eje \(Y\) en el punto \((0,\ c)\). Para calcular los puntos de corte con el eje \(X\) habremos de resolver la ecuación general de segundo grado \(ax^2+bx+c=0\). Si esta ecuación no tiene soluciones la parábola no cortará al eje \(X\) y estará toda ella por encima o por debajo del mismo (si \(a>0\) por encima y si \(a<0\) por debajo). Si la ecuación sólo tiene una solución porque el discriminante sea cero (\(b^2-4ac=0\)), la parábola toca al eje \(X\) en un sólo punto (es tangente al mismo). Además este punto será el vértice de la parábola. Si la ecuación tiene dos soluciones, \(x_1=\dfrac{-b+\sqrt{b^2-4ac}}{2a}\) y \(x_2=\dfrac{-b-\sqrt{b^2-4ac}}{2a}\), la parábola cortará al eje \(X\) en los puntos \((x_1,\ 0)\) y \((x_2,\ 0)\). Es fácil demostrar, de manera similar a como se hizo en el caso anterior, que la coordenada \(x\) del vértice de la parábola sigue siendo \(x=\dfrac{-b}{2a}\). En cualquier caso, para representar la parábola lo más apropiado es hallar el vértice, el punto de corte con el eje \(Y\), los puntos de corte con el eje \(X\) (caso de que haya) y construir una tabla de valores con tres o cuatro puntos a cada uno de los lados del vértice (si la parábola corta al eje \(X\) ya tenemos dos de ellos), tal y como se hizo en el apartado anterior. Veremos pues un último ejemplo.

Sea pues, por ejemplo, la función parabólica \(f(x)=\dfrac{1}{2}x^2-\dfrac{3}{2}x-2\).

La coordenada \(x\) del vértice será \(x=-\dfrac{-3/2}{2\cdot(1/2)}=\dfrac{3}{2}\). La coordenada \(y\) del vértice será, por tanto:

\[y=\dfrac{1}{2}\cdot\left(\dfrac{3}{2}\right)^2-\dfrac{3}{2}\cdot\dfrac{3}{2}-2=\dfrac{9}{8}-\dfrac{9}{4}-2=-\dfrac{25}{8}\]

Así pues, el vértice de la parábola es el punto \(\left(\dfrac{3}{2},\ -\dfrac{25}{8}\right)=(1.5\ ,\ -3.125)\).

Resolviendo la ecuación de segundo grado \(\dfrac{1}{2}x^2-\dfrac{3}{2}x-2=0\) obtendremos la coordenada \(x\) de los puntos de corte con el eje \(X\), caso de que existan. Vamos a verlo.

\[\frac{1}{2}x^2-\dfrac{3}{2}x-2=0\Rightarrow x^2-3x-4=0\Rightarrow\]

\[\Rightarrow x=\frac{3\pm\sqrt{9-4\cdot1\cdot(-4)}}{2\cdot1}=\frac{3\pm\sqrt{25}}{2}=\frac{3\pm5}{2}=\begin{cases}x_1=4\\x_2=-1\end{cases}\]

Por tanto los puntos de corte con el eje \(X\) son \((4,\ 0)\) y \((-1,\ 0)\) (obsérvese que la coordenada \(x\) del vértice es justo el punto medio de \(4\) y \(-1\)). Además, el punto de corte con el eje \(Y\) es, claramente, \((0,\ -2)\). Elaboremos finalmente una tabla con los puntos hallados y algunos más alrededor del vértice.

\[\begin{matrix}\hline x & 3/2 & -1 & 4 & 0 & 3 & -2 & 5 \\ \hline y & -25/8 & 0 & 0 & -2 & -2 & 3 & 3 \\ \hline\end{matrix}\]

La representación gráfica de la parábola es, por tanto:

parabola13

Leer más ...

La función lineal. Ecuación de la recta

Se dice que una función real de variable real es una función lineal si es de la forma \(f(x)=mx+n\) (indistintamente utilizaremos la escritura \(y=mx+n\)). Es decir, la ecuación de la función se corresponde con un polinomio de primer grado. La representación gráfica de una función lineal es siempre una recta. El coeficiente \(m\) recibe el nombre de pendiente de la recta y, como su nombre indica, será el responsable de lo inclinada o "pendiente" que se encuentre la recta respecto del eje \(X\). Podemos distinguir un par de casos particulares.

Si \(m=0\) la función lineal es de la forma \(f(x)=n\). En este caso la función lineal es constante y su representación gráfica es una recta horizontal (paralela al eje \(X\)) que pasa por la ordenada \(y=n\). Es decir, todos sus puntos son de la forma \((x,\ n)\). Por ejemplo, la representación gráfica de la función \(f(x)=3\) es la siguiente:

lineal02

Obsérvese que adquiere sentido el nombre de pendiente para el coeficiente \(m\). Si \(m=0\) la recta no tiene pendiente, es decir, no tiene inclinación alguna y es horizontal.

Si \(n=0\) la función lineal es de la forma \(f(x)=mx\). En este caso la representación gráfica es una recta que pasa por el origen de coordenadas, es decir, por el punto \((0,\ 0)\). Por ejemplo, las funciones \(y=3x\), \(y=-3x\)  tienen por representación gráfica las siguientes rectas:

lineal03

Las funciones lineales del tipo anterior, es decir, aquellas cuya ecuación es \(f(x)=mx\), también se conocen con el nombre de funciones de proporcionalidad directa. Si en el eje \(X\) representamos una magnitud \(A\) y en el eje \(Y\) una magnitud \(B\) directamente proporcional a la anterior, con constante de proporcionalidad igual a \(m\), entonces a cada valor \(x\) de la magnitud \(A\) le correspondera el valor \(mx\) de la magnitud \(B\). Un ejemplo clásico es la trayectoria de un móvil que se mueve a velocidad constante, digamos igual a \(2\ m/s\), desde el comienzo del movimiento hasta el instante de tiempo \(t=10\ \text{seg}\). La ecuación del movimiento viene dada por \(s=2t\) donde \(s\) es el espacio recorrido en metros y \(t\) el tiempo transcurrido en segundos. Así, para \(t=2\,\text{seg}\) se ha recorrido \(s=2\cdot2=4\ \text{m}\). Y para \(t=5\,\text{seg}\) se ha recorrido \(s=2\cdot5=10\,\text{m}\). La representación gráfica del movimiento es:

lineal04

Toda recta forma, de manera natural, un ángulo con el eje \(X\). Teniendo en cuenta la orientación positiva de los ángulos (que es aquella que se corresponde con el sentido contrario de las agujas del reloj), y tomando como partida el propio eje \(X\), si la recta es creciente el ángulo que forma la recta con el eje \(X\) es agudo y si es decreciente el ángulo será obtuso. Así por ejemplo las rectas \(y=0,75x\), \(y=-1,5x\) forman, respectivamente, ángulos \(\alpha\) y  \(\beta\) con el eje \(X\): 

lineal05

De hecho, la pendiente de la recta también informa sobre el ángulo que forma la recta con el eje \(X\). Supongamos que los puntos \((x_1,\ y_1)\), \((x_2,\ y_2)\) pertenecen a la recta \(y=mx+n\). Entonces:

\[\begin{cases}y_2=mx_2+n\\y_1=mx_1+n\end{cases}\]

Restando ambas ecuaciones:

\[y_2-y_1=m\left(x_2-x_1\right)\]

Y de la igualdad anterior se obtiene la siguiente fórmula para la pendiente de una recta que pasa por dos puntos \((x_1,\ y_1)\), \((x_2,\ y_2)\):

\[m=\frac{y_2-y_1}{x_2-x_1}\]

Veamos el significado gráfico de la igualdad anterior.

lineal06

Obsérvese que, en la gráfica anterior, el triángulo \(PQR\) es rectángulo. En este triángulo rectángulo se cumple que \(\text{tg}\ \alpha=\dfrac{y_2-y_1}{x_2-x_1}\). Enlazando con la igualdad anterior tenemos que la pendiente de una recta es igual a la tangente trigonométrica del ángulo \(\alpha\) que dicha recta forma con el eje \(X\): \(m=\text{tg}\ \alpha\).

Por tanto, podemos deducir un par de propiedades más de las funciones lineales a partir de su pendiente.

  • Si \(m>0\) la recta es creciente, es decir, forma un ángulo agudo con el eje \(X\). Esto es por que si \(m=\text{tg}\ \alpha>0\Rightarrow0^{\circ}<\alpha<90^{\circ}\).
  • Si \(m<0\) la recta es decreciente, es decir, forma un ángulo obtuso con el eje \(X\). Esto es por que si \(m=\text{tg}\ \alpha<0\Rightarrow90^{\circ}<\alpha<180^{\circ}\).

Utilizando lo anterior podemos hallar el ángulo de las rectas que se han dibujado en anteriormente. La recta \(y=0,75x\) tiene pendiente igual a \(0,75\), es decir, \(\text{tg}\ \alpha=0,75\), y de aquí se deduce, utilizando una calculadora, que \(\alpha=\text{arctg}\ 0,75=36,87^{\circ}\). Análogamente, el ángulo \(\beta\) que forma la recta \(y=-1,5x\) con el eje \(X\) es \(\beta=\text{arctg}(-1,5)=123,69^{\circ}\).

Leer más ...
Suscribirse a este canal RSS

lasmatematicas.eu

Aplicaciones

Sígueme

webs de matemáticas