Menu
¿Necesitas ayuda con las matemáticas? ¿Piensas que nunca serás capaz de entenderlas?

¿Necesitas ayuda con las matemática…

Ahora puedes tener un pro...

Completando cuadrados. Aplicación al cálculo de primitivas o integrales indefinidas

Completando cuadrados. Aplicación a…

Supongamos que me piden c...

La Universidad Europea de Madrid (UEM)

La Universidad Europea de Madrid (U…

La Universidad Europea de...

Cuadratura de un segmento de parábola

Cuadratura de un segmento de parábo…

Una forma de acercarse al...

Ejercicios de aplicaciones de las derivadas y del teorema del valor medio

Ejercicios de aplicaciones de las d…

Se proponen a continuaci&...

Aplicaciones de las derivadas. El teorema del valor medio

Aplicaciones de las derivadas. El t…

Ya hemos hablado en un pa...

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. R…

Cuando en las matem&aacut...

Series infinitas de números reales. Series convergentes

Series infinitas de números reales.…

Las sucesiones de n&uacut...

La paradoja de Zenón

La paradoja de Zenón

El filósofo griego...

Prev Next

Derivada de la función compuesta. Regla de la cadena

Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de la derivada de una función en un punto usando la definición y aprovechando el cálculo de límites. A continuación, se introducen inmediatamente las reglas de derivación: de un número por una función, de la suma y la resta, del producto y del cociente, así como la derivada de la función compuesta o regla de la cadena. También se dan las derivadas de las funciones elementales (puedes consultar este artículo), generalmente mediante una tabla de derivadas, que suele aparecer dividida en dos: la derivada de la función directamente y la derivada de la función compuesta en la que se hace uso de la regla de la cadena.

Es probable que en bachillerato también se demuestren, usando la definición de derivada de una función en un punto, algunas de las reglas de derivación (por ejemplo la derivada de la suma o del producto de dos funciones), pero lo que no se suele hacer es la demostración de la derivada de la función compuesta, conocida más habitualmente por regla de la cadena. Aprovechando que en esta Web hemos dedicado artículos a hablar sobre la composición de funciones, función inversa de una función y sobre el concepto de convergencia de una sucesión, vamos a proceder a la demostración de la regla de la cadena. Aprovecharemos también para enunciar y demostrar el teorema de la función inversa. Finalmente, y como consecuencia de lo anterior, demostraremos un resultado conocido por todos los estudiantes de matemáticas en bachillerato: de todas las funciones exponenciales, la de base el número \(\text{e}\) es la única que coincide con su función derivada. Este resultado justifica que la función exponencial de base \(\text{e}\) sea la función exponencial por excelencia. De hecho, a la función exponencial de base \(\text{e}\) se la llama, simplemente, función exponencial.

Teorema 1 (de la función compuesta o regla de la cadena)

Sean \(f:A\rightarrow\mathbb{R}\), \(f:B\rightarrow\mathbb{R}\) funciones reales de variable real verificando que \(f(A)\subset B\) y sea \(h=g\circ f\). Sea también \(a\in A\) y supongamos que \(f\) es derivable en \(a\) y que \(g\) es derivable en \(f(a)\). Entonces \(h\) es derivable en \(a\) y se verifica que

\[h'(a)=g'(f(a))f'(a)\]

Sea \(\phi:B\rightarrow\mathbb{R}\) la función definida por

\[\phi(y)=\left\{\begin{array}{ccc}
                   \displaystyle\frac{g(y)-g(f(a))}{y-f(a)} & \text{si} & y\in B-\{f(a)\} \\
                   g'(f(a)) & \text{si} & y=f(a)
                 \end{array}
\right.\]

La derivabilidad de \(g\) en \(f(a)\) hace que \(\phi\) sea continua en \(f(a)\). Se tiene además:

\[g(y)-g(f(a))=\phi(y)(y-f(a))\,,\forall\, y\in B\]

igualdad que, para \(y\neq f(a)\), se deduce de la definición de \(\phi\), mientras que, para \(y=f(a)\), es evidente por ser nulos sus dos miembros.

Dado \(x\in A\) tenemos, tomando \(y=f(x)\),

\[h(x)-h(a)=\phi(f(x))(f(x)-f(a))\]

de donde, si además es \(x\neq a\),

\[\frac{h(x)-h(a)}{x-a}=\phi(f(x))\frac{f(x)-f(a)}{x-a}\]

Por ser \(f\) continua en \(a\) y \(\phi\) continua en \(f(a)\) tenemos que \(\phi\circ f\) es continua en \(f(a)\) (ver proposición 3 del artículo dedicado a las propiedades de las funciones continuas), luego

\[\lim_{x\rightarrow a}\phi(f(x))=\phi(f(a))=g'(f(a))\]

Finalmente, como el límite del producto es el producto de los límites tenemos

\[\lim_{x\rightarrow a}\frac{h(x)-h(a)}{x-a}=\lim_{x\rightarrow a}\phi(f(x))\lim_{x\rightarrow a}\frac{f(x)-f(a)}{x-a}\Rightarrow h'(a)=g'(f(a))f'(a)\]tal y como queríamos demostrar.

El siguiente teorema nos permitirá estudiar la posible derivabilidad de la inversa de una función derivable e inyectiva.

Teorema 2 (de la función inversa)

Sea \(f:A\rightarrow\mathbb{R}\) una función real de variable real y \(a\) un punto de \(A\). Supongamos que \(f\) es inyectiva y que es derivable en el punto \(a\). Entonces las siguientes afirmaciones son equivalentes.

i) \(f'(a)\neq0\) y \(f^{-1}\) es continua en \(f(a)\).

ii) \(f^{-1}\) es derivable en \(f(a)\).

Además, en caso de que se cumplan i) y ii) se tiene:

\[(f^{-1})'(f(a))=\frac{1}{f'(a)}\]

i) \(\Rightarrow\) ii) Sea \(\{y_n\}\) una sucesión de puntos de \(f(A)-\{b\}\) con \(\{y_n\}\rightarrow f(a)\) y consideremos la sucesión \(x_n=f^{-1}(y_n)\,,\forall\,n\in\mathbb{N}\). Por ser \(f^{-1}\) continua en \(f(a)\) tenemos \(\{x_n\}\rightarrow f^{-1}(f(a))=a\), luego, por ser \(f\) derivable en \(a\):

\[\left\{\frac{f(x_n)-f(a)}{x_n-a}\right\}=\left\{\frac{y_n-f(a)}{f^{-1}(y_n)-f^{-1}(f(a))}\right\}\rightarrow f'(a)\]

Finalmente, siendo \(f'(a)\neq0\) obtenemos

\[\left\{\frac{f^{-1}(y_n)-f^{-1}(f(a))}{y_n-b}\right\}\rightarrow\frac{1}{f'(a)}\]

lo que demuestra que \(f^{-1}\) es derivable en \(f(a)\) con derivada \(\frac{1}{f'(a)}\).

ii) \(\Rightarrow\) i) Desde luego, si \(f^{-1}\) es derivable en \(f(a)\) será continua en \(f(a)\). Además, aplicando el teorema anterior con \(B=f(A)\) y \(g=f^{-1}\) tenemos: \(1=(f^{-1}\circ f)'(a)=(f^{-1})'(f(a))f'(a)\), lo que demuestra que \(f'(a)\neq0\) y nos da nuevamente la igualdad \((f^{-1})'(f(a))=\frac{1}{f'(a)}\).

Finalmente, vamos a probar la derivabilidad de las funciones exponencial y logaritmo neperiano y la de las funciones relacionadas con ellas.

Teorema 3

i) La función exponencial es derivable en todo \(\mathbb{R}\) y su función derivada es la propia función exponencial.

ii) Si \(f:A\rightarrow\mathbb{R}\) es derivable en un punto \(a\in A\), entonces la función \(g:A\rightarrow\mathbb{R}\) definida por

\[g(x)=\text{e}^{f(x)}\,,\forall\,x\in A\]

es derivable en \(a\) con \(g'(a)=f'(a)\text{e}^{f(a)}\). En particular, si \(\alpha\) es un número real positivo y tomamos \(A=\mathbb{R}\), \(f(x)=x\ln\alpha\,,\forall\,x\in\mathbb{R}^+\), obtenemos que la función exponencial de base \(\alpha\) es derivable en todo \(\mathbb{R}\) siendo su función derivada el producto del número real \(\ln\alpha\) por la propia función exponencial de base \(\alpha\).

iii) La función logaritmo neperiano es derivable en \(\mathbb{R}^+\) con

\[\ln'(x)=\frac{1}{x}\,,\forall\,x\in\mathbb{R}^+\]

iv) Si \(f:A\rightarrow\mathbb{R}^+\) es derivable en un punto \(a\in A\), la función \(g:A\rightarrow\mathbb{R}\) definida por

\[g(x)=\ln f(x)\,,\forall\,x\in A\]

es derivable en \(a\) con \(g'(a)=\frac{f'(a)}{f(a)}\) (derivada logarítmica de \(f\) en el punto \(a\)).

v) Si  \(f:A\rightarrow\mathbb{R}^+\) y \(g:A\rightarrow\mathbb{R}\) son derivables en un punto \(a\in A\), la función \(h:A\rightarrow\mathbb{R}^+\) definida por

\[h(x)=f(x)^{g(x)}\,,\forall\,x\in A\]

es derivable en \(a\) con

\[h'(a)=h(a)\left(g'(x)\ln f(a)+g(a)\frac{f'(a)}{f(a)}\right)\]

En particular, tomando \(A=\mathbb{R}^+\), \(f(x)=x\,,\forall\,x\in\mathbb{R}^+\) y \(g(x)=b\,,\forall\,x\in\mathbb{R}^+\) donde \(b\) es un número real fijo, se obtiene que la función potencia de exponente \(b\) es derivable en \(\mathbb{R}^+\) y su derivada es el producto del número real \(b\) por la función potencia de exponente \(b-1\).

i) Sea \(\{t_n\}\) una sucesión de números reales no nulos, convergente a cero. Y sean \(y_n=\frac{1}{t_n}\), \(x_n=\text{e}^{t_n}\), \(\forall\,n\in\mathbb{N}\). Claramente \(\{x_n\}\rightarrow1\) y \(\{x_n^{y_n}\}\rightarrow\text{e}\), luego tenemos \(\{y_n(x_n-1)\}\rightarrow1\) (ver el artículo dedicado a ciertos límites funcionales de interés), esto es que \(\{\frac{1}{t_n}(\text{e}^{t_n-1})\}\rightarrow1\).

Sea ahora \(a\in\mathbb{R}\) arbitrario y \(\{a_n\}\) una sucesión de números reales distintos de \(a\) tal que \(\{a_n\}\rightarrow a\). Podemos entonces aplicar lo anteriormente probado a la sucesión \(\{a_n-a\}\), sucesión de números reales no nulos que converge a cero, y obtener:

\[\left\{\frac{\text{e}^{a_n}-\text{e}^a}{a_n-a}\right\}=\left\{\text{e}^a\frac{\text{e}^{a_n-a}-1}{a_n-a}\right\}\rightarrow \text{e}^a\]

Hemos probado así que

\[f'(a)=\lim_{x\rightarrow a}\frac{\text{e}^x-\text{e}^a}{x-a}=\text{e}^a\]

y esto, cualquiera que sea el número real \(a\).

ii) Basta aplicar i) y la regla de la cadena.

iii) La función logaritmo neperiano es continua en \(\mathbb{R}^+\) y, por i), la función exponencial es derivable en \(\mathbb{R}\) con derivada distinto de cero en todo punto. Por el teorema de la función inversa tenemos, para todo número real \(a\):

\[\ln'(\text{e}^a)=\frac{1}{\text{e}^a}\]

y dado \(x\in\mathbb{R}^+\), podemos tomar \(a=\ln x\) para obtener

\[\ln'(x)=\frac{1}{x}\]

iv) Basta aplicar iii) y la regla de la cadena.

v) Sea \(\phi:A\rightarrow\mathbb{R}\) definida por

\[\phi(x)=\ln h(x)=g(x)\ln f(x)\,,\forall\,x\in A\]

Usando iv) y la regla de derivación de un producto, \(\phi\) es derivable en \(a\) con

\[\phi'(a)=g'(a)\ln f(a)+g(a)\frac{f'(a)}{f(a)}\]

Como quiera que

\[h(x)=\text{e}^{\phi(x)}\,,\forall\,x\in A\]

usando ii) obtenemos que \(h\) es derivable en \(a\) con

\[h'(a)=\text{e}^{\phi(a)}\phi'(a)=h(a)\left(g'(x)\ln f(a)+g(a)\frac{f'(a)}{f(a)}\right)\]

Ejercicios

1. Sea \(f:A\rightarrow\mathbb{R}\), \(a\in A\) y supongamos que \(f\) es derivable en \(a\) con \(f(a)\neq0\). Probar que las funciones \(|f|\,,f^+\,,f^-\,:A\rightarrow\mathbb{R}\) dadas por:

\[|f|(x)=|f(x)|\,,\ f^+(x)=\max\{f(x),0\}\,,\ f^-(x)=\max\{-f(x),0\}\,,\forall x\in A\]

son derivables en \(a\). ¿Es cierta la misma afirmación sin suponer \(f(a)\neq0\)?

La función \(|f|\) es la composición de la función \(f\) con la función valor absoluto: \(|f|=f\circ |\cdot|\). Como \(f\) es derivable en \(a\) y la función valor absoluto es derivable en \(f(a)\neq0\), la regla de la cadena nos asegura que \(|f|\) es derivable en \(a\). Si \(f(a)=0\) la afirmación no es cierta pues la función valor absoluto no es derivable en cero. Sea por ejemplo la función

\[f(x)=x^2-1\Rightarrow|f(x)|=\left\{\begin{array}{ccc}
                  x^2-1 & \text{si} & x\in(-\infty,-1]\cup[1,+\infty) \\
                  -x^2+1 & \text{si} & x\in(-1,1)
                \end{array}
  \right.\]

En el punto \(a=1\) se tiene

\[\frac{f(x)-f(1)}{x-1}=\left\{\begin{array}{ccc}
                  x+1 & \text{si} & x\in(-\infty,-1]\cup[1,+\infty) \\
                  -x-1 & \text{si} & x\in(-1,1)
                \end{array}
  \right.\]

De esta manera

\[\lim_{x\rightarrow1^+}\frac{f(x)-f(1)}{x-1}=2\quad;\quad\lim_{x\rightarrow1^-}\frac{f(x)-f(1)}{x-1}=-2\]

y por tanto \(|f|\) no es derivable en \(a=1\).

Por otro lado, se tiene que

\[f^+(x)=\max\{f(x),0\}=\frac{f(x)+|f(x)|}{2}\ ;\ f^-(x)=\max\{-f(x),0\}=\frac{-f(x)+|f(x)|}{2}\]

Entonces, por lo demostrado anteriormente, tanto \(f^+\) como \(f^-\) son derivables en \(a\in A\) con \(f(a)\neq0\). Del mismo modo que antes, esta afirmación no tiene por qué ser cierta si \(f(a)=0\).

2. Estudiar la continuidad y derivabilidad de la función \(f:A\rightarrow\mathbb{R}\) en cada uno de los siguientes casos:

a) \(A=[-1,1]\) ; \(f(x)=\sqrt{1-x^2}\,,\forall\,x\in A\).

b) \(A=\mathbb{R}\) ; \(f(x)=\sqrt[3]{|x|}\,,\forall\,x\in\mathbb{R}\).

c) \(A=\mathbb{R}\) ; \(f(x)=\frac{2x}{1+|x|}\,,\forall\,x\in\mathbb{R}\).

d) \(A=\mathbb{R}_0^+\) ; \(f(x)=x^x\,,\forall\,x\in\mathbb{R}^+\), \(f(0)=1\).

e) \(A=[0,1]\) ; \(f(x)=\max\{x,1-x\}\,,\forall\,x\in A\).

a) Sean \(g:\mathbb{R}\rightarrow\mathbb{R}\) y \(h:[0,+\infty)\rightarrow\mathbb{R}\) definidas respectivamente por \(g(x)=1-x^2\) y \(h(x)=\sqrt{x}\). \(g\) es continua y derivable en todo \(\mathbb{R}\), y \(h\) es continua en \([0,+\infty)\) y derivable en \((0,+\infty)\).

\(h\) no es derivable en cero porque

\[\lim_{x\rightarrow0}\frac{h(x)-h(0)}{x-0}=\lim_{x\rightarrow0^+}\frac{\sqrt{x}}{x}=\lim_{x\rightarrow0}\frac{1}{\sqrt{x}}=+\infty\]

Las derivadas de las funciones \(g(x)=1-x^2\) y \(h(x)=\sqrt{x}=x^{1/2}\) son, respectivamente, \(g'(x)=-2x\) y \(h'(x)=\frac{1}{2}x^{-1/2}\), donde se ha utilizado que la derivada de la función constante es igual a cero, que la derivada de la suma es la suma de las derivadas y el apartado v) del teorema 3, según el cual la derivada de la función potencia de exponente \(b\in\mathbb{R}^+\) es el producto del número real \(b\) por la función potencia de exponente \(b-1\).

Por otro lado tenemos que \((h\circ g)(x)=h(g(x))=h(1-x^2)=\sqrt{1-x^2}\), con lo que \(f=h\circ g\). Por la regla de la cadena \(f\) es derivable en \((-1,1)\), ya que si \(a\in(-1,1)\), entonces \(1-a^2\in(0,1)\) y \(f(a)=h(g(a))=h(1-a^2)\). Además, \(f\) no es derivable ni en \(x=-1\), ni en \(x=-1\) porque, tal y como hemos comprobado, no lo es \(h\) en cero y \(f(-1)=f(1)=(h\circ g)(1)=h(g(1))=h(0)\). Dado \(x\in(-1,1)\), la regla de la cadena nos proporciona la derivada de la función \(f\) en \(x\):

\[f'(x)=(h\circ g)'(x)=h'(g(x))g'(x)=\frac{1}{2}(1-x^2)^{-1/2}(-2x)=\frac{-x}{\sqrt{1-x^2}}\]

 

b) La función \(f(x)=\sqrt[3]{|x|}=|x|^{1/3}\) la podemos escribir así:

\[f(x)=\left\{\begin{array}{ccc}
                    x^{1/3} & \text{si} & x\geqslant0 \\
                    (-x)^{1/3} & \text{si} & x<0
                  \end{array}
    \right.\]

Si \(a\in\mathbb{R}^+\), \(f\) es derivable en \(a\) por el apartado 5 del teorema 3, con \(f'(a)=\frac{1}{3}a^{-2/3}\). Por la misma razón, si \(a\in\mathbb{R}^-\), \(f\) también es derivable en \(a\) con derivada \(f'(a)=-\frac{1}{3}a^{-2/3}\).

Si \(a=0\), \(f\) no es derivable en \(a\) pues tomando \(x>0\)

\[\frac{f(x)-f(0)}{x-0}=\frac{\sqrt[3]{x}}{x}=\frac{1}{\sqrt[3]{x^2}}\]

que no tiene límite finito cuando \(x\rightarrow0\).

 

c) La función la podemos escribir del siguiente modo:

\[f(x)=\left\{\begin{array}{ccc}
                    \displaystyle\frac{2x}{1+x} & \text{si} & x\geqslant0 \\
                    \displaystyle\frac{2x}{1-x} & \text{si} & x<0
                  \end{array}
    \right.\]

Esta función es claramente continua y derivable en \(\mathbb{R}-\{0\}\) con derivada

\[f'(x)=\left\{\begin{array}{ccc}
                    \displaystyle\frac{2}{(1+x)^2} & \text{si} & x>0 \\
                    \displaystyle\frac{2}{(1-x)^2} & \text{si} & x<0
                  \end{array}
    \right.\]

Veamos qué ocurre en cero.

Tomando \(x>0\):

\[\lim_{x\rightarrow0}\frac{f(x)-f(0)}{x-0}=\lim_{x\rightarrow0}\frac{\frac{2x}{1+x}}{x}=\lim_{x\rightarrow0}\frac{2}{1+x}=2\]

Tomando \(x<0\):

\[\lim_{x\rightarrow0}\frac{f(x)-f(0)}{x-0}=\lim_{x\rightarrow0}\frac{\frac{2x}{1-x}}{x}=\lim_{x\rightarrow0}\frac{2}{1-x}=2\]

Las derivadas laterales existen y son iguales. Por tanto, \(f\) es derivable en cero con \(f'(0)=2\).

 

d) Si \(a\in\mathbb{R}^+\) el apartado v) del teorema iii) nos asegura que \(f\) es derivable en \(a\) con derivada

\[f'(a)=a^a\left(\ln a+1\right)\]

Estudiemos ahora la derivabilidad de \(f\) en cero. Sea \(\phi\) la función definida de la siguiente manera:

\[\phi(x)=\left\{\begin{array}{ccc}
                    x\ln x & \text{si} & x>0 \\
                    0 & \text{si} & x=0
                  \end{array}
    \right.\]

Puesto que

\[\lim_{x\rightarrow0}\frac{\phi(x)-\phi(0)}{x-0}=\lim_{x\rightarrow0}\frac{x\ln x}{x}=\lim_{x\rightarrow0}\ln x=-\infty\]

la función \(\phi\) no es derivable en cero.

Supongamos que \(f\) fuera derivable en cero. Como \(f(x)=\text{e}^{\phi(x)}\), haciendo uso de la regla de la cadena, tendríamos que \(f'(0)=e^{\phi(0)}\phi'(0)=\phi'(0)\), lo cual es contradictorio pues \(\phi\) no es derivable en cero. Por tanto, acabamos de demostrar que \(f\) no es derivable en cero.

 

e) Observemos que \(x=1-x\Leftrightarrow x=\frac{1}{2}\), \(x<1-x\Leftrightarrow x<\frac{1}{2}\) y \(x>1-x\Leftrightarrow x>\frac{1}{2}\). Por tanto podemos escribir la función \(f(x)=\max\{x,1-x\}\) del siguiente modo:

\[f(x)=\left\{\begin{array}{ccc}
                    1-x & \text{si} & 0\leqslant x\leqslant\frac{1}{2} \\
                    x & \text{si} & \frac{1}{2}<x\leqslant1
                  \end{array}
    \right.\]

Claramente, si \(x\neq0\), \(x\neq1\) y \(x\neq\frac{1}{2}\), \(f\) es derivable con derivada

\[f'(x)=\left\{\begin{array}{ccc}
                    -1 & \text{si} & 0<x<\frac{1}{2} \\
                    1 & \text{si} & \frac{1}{2}<x<1
                  \end{array}
    \right.\]

Si \(x=0\) existe la derivada lateral por la derecha, cuyo valor es \(f'_+(0)=-1\). Análogamente, si \(x=1\) existe la derivada lateral por la izquierda y \(f'_-(1)=1\) (estos resultados se pueden obtener también con facilidad aplicando la definición de derivada lateral de una función en un punto). Finalmente, \(f\) no es derivable en \(x=\frac{1}{2}\) pues las derivadas laterales por la izquierda y por la derecha de \(\frac{1}{2}\) no coinciden: \(f'_-\left(\frac{1}{2}\right)=-1\neq1=f'_+\left(\frac{1}{2}\right)\).

3. Estudiar la continuidad y derivabilidad de la función \(f:\mathbb{R}\rightarrow\mathbb{R}\) definida por:

\[f(x)=\left\{\begin{array}{ccc}
                  x^2 & \text{si} & x\in\mathbb{Q} \\
                  x^3 & \text{si} & x\in\mathbb{R}-\mathbb{Q}
                \end{array}
  \right.\]

Sea \(a\in\mathbb{R}\) y \(\{x_n\}\) una sucesión de racionales convergente al punto \(a\). Entonces tenemos que \(\{f(x_n)\}=\{x_n^2\}\rightarrow a^2\). Sea ahora una sucesión \(\{y_n\}\) de irracionales que converja también al punto \(a\). En este caso \(\{f(y_n)\}=\{y_n^3\}\rightarrow a^3\). Para que \(f\) sea continua en \(a\) debe ser \(a^2=a^3\), es decir, \(a=0\) o \(a=1\). Si \(a=0\Rightarrow\{f(x_n)\}\rightarrow0=f(0)\), sea quien sea la sucesión \(\{x_n\}\). Si \(a=1\Rightarrow\{f(x_n)\}\rightarrow1=f(1)\). Entonces \(f\) es continua en \(0\) y en \(1\). En los demás puntos no es continua y, por tanto, tampoco es derivable.

Estudiemos la derivabilidad en el punto \(a=0\). En este caso

\[\frac{f(x)-f(0)}{x-0}=\left\{\begin{array}{ccc}
                                   x & \text{si} & x\in\mathbb{Q} \\
                                   x^2 & \text{si} & x\in\mathbb{R}-\mathbb{Q}
                                 \end{array}
  \right.\]

Entonces es claro que \(\displaystyle\lim_{x\rightarrow0}\frac{f(x)-f(0)}{x-0}=0\), con lo que \(f\) es derivable en \(0\) y \(f'(0)=0\).

Veamos ahora qué ocurre en \(a=1\).

\[\frac{f(x)-f(1)}{x-1}=\left\{\begin{array}{ccc}
                                   x+1 & \text{si} & x\in\mathbb{Q} \\
                                   x^2+x+1 & \text{si} & x\in\mathbb{R}-\mathbb{Q}
                                 \end{array}
  \right.\]

En este caso \(\displaystyle\frac{f(x)-f(1)}{x-1}\) no tiene límite en \(1\), pues si \(x\rightarrow1\) por racionales \(\displaystyle\frac{f(x)-f(1)}{x-1}\rightarrow2\) y si \(x\rightarrow1\) por irracionales \(\displaystyle\frac{f(x)-f(1)}{x-1}\rightarrow3\). Por tanto, \(f\) no es derivable en \(a=1\).

4. Probar que la función \(f:\mathbb{R}\rightarrow\mathbb{R}\) definida por:

\[f(x)=\left\{\begin{array}{ccc}
                  x & \text{si} & x\in\mathbb{R}_0^- \\
                  \ln(1+x) & \text{si} & x\in\mathbb{R}^+
                \end{array}
  \right.\]

es derivable en \(\mathbb{R}\) y encontrar su función derivada.

La función es claramente continua y derivable en \(\mathbb{R}-\{0\}\), con

\[f'(x)=\left\{\begin{array}{ccc}
                                   1 & \text{si} & x<0 \\
                                   \frac{1}{1+x} & \text{si} & x>0
                                 \end{array}
  \right.\]

Como \(\displaystyle\lim_{x\rightarrow0^+}f(x)=\lim_{x\rightarrow0^-}f(x)=0\), entonces \(\displaystyle\lim_{x\rightarrow0}f(x)=0=f(0)\), \(f\) es continua en \(0\).

Además:

\[\lim_{x\rightarrow0^-}\frac{f(x)-f(0)}{x-0}=1\ ;\ \lim_{x\rightarrow0^+}\frac{f(x)-f(0)}{x-0}=\lim_{x\rightarrow0^+}\frac{\ln(1+x)}{x}=1\]

Para demostrar que este último límite es igual a \(1\), demostraremos que \(\displaystyle\lim_{x\rightarrow0^+}(1+x)^{1/x}=\text{e}\). Sea \(y=\frac{1}{x}\). Entonces, \(x\rightarrow0^+\Rightarrow y\rightarrow+\infty\) y tenemos:

\[\lim_{x\rightarrow0^+}(1+x)^{1/x}=\lim_{y\rightarrow+\infty}\left(1+\frac{1}{y}\right)^y=\text{e}\]

Y de aquí, por la continuidad de la función logaritmo neperiano, se deduce que

\[\lim_{x\rightarrow0^+}\ln(1+x)^{1/x}=\lim_{x\rightarrow0^+}\frac{1}{x}\ln(1+x)=\lim_{x\rightarrow0^+}\frac{\ln(1+x)}{x}=\ln\text{e}=1\]

Por tanto, hemos demostrado que

\[\lim_{x\rightarrow0^-}\frac{f(x)-f(0)}{x-0}=\lim_{x\rightarrow0^+}\frac{f(x)-f(0)}{x-0}=1\]

Así, \(f\) es derivable en cero con \(f'(0)=1\).

5. Estudiar la continuidad y derivabilidad de la función \(f:\mathbb{R}\rightarrow\mathbb{R}\) definida por:

\[f(x)=\left\{\begin{array}{ccc}
                  x^p\ln|x| & \text{si} & x\in\mathbb{R}-\{0\} \\
                  0 & \text{si} & x=0
                \end{array}
  \right.\]

donde \(p\) es un número entero.

La función es continua y derivable en \(\mathbb{R}-\{0\}\) y tenemos que

\[f'(x)=\left\{\begin{array}{ccc}
                                   x^{p-1}(p+\ln x) & \text{si} & x>0 \\
                                   x^{p-1}(p-\ln(-x)) & \text{si} & x<0
                                 \end{array}
  \right.\]

Como \(|x^p\ln|x||\leqslant|x^{p+1}|\), entonces \(\forall\,\varepsilon>0\,,\exists\,\delta>0\,:\,x\in\mathbb{R}\,,\,0<|x|<\delta\Rightarrow|f(x)|<\varepsilon\). Basta tomar \(\delta=\sqrt[p+1]{\varepsilon}\). Entonces

\[\lim_{x\rightarrow0}f(x)=\lim_{x\rightarrow0}\left(x^p\ln|x|\right)=0=f(0)\]

y, por tanto, \(f\) es continua en cero.

Usando lo demostrado anteriormente tenemos también

\[\lim_{x\rightarrow0}\frac{f(x)-f(0)}{x-0}=\lim_{x\rightarrow0}\frac{x^p\ln|x|}{x}=\lim_{x\rightarrow0}\left(x^{p-1}\ln|x|\right)=0\]

lo que demuestra que \(f\) es derivable en \(0\) con \(f'(0)=0\).

6. Sea \(f:\mathbb{R}\rightarrow\mathbb{R}\) definida por \(f(x)=x+\text{e}^x\,,\forall\,x\in\mathbb{R}\). Probar que \(f\) es biyectiva y que \(f^{-1}\) es derivable en todo \(\mathbb{R}\). Calcular \((f^{-1})'(1)\) y \((f^{-1})'(1+\text{e})\).

La función \(f\) es continua y derivable en todo \(\mathbb{R}\) por ser suma de continuas y derivables. Por otro lado, \(f(x)\rightarrow-\infty\) cuando \(x\rightarrow-\infty\) y \(f(x)\rightarrow+\infty\) cuando \(x\rightarrow+\infty\), lo que demuestra que \(f(\mathbb{R})=\mathbb{R}\) y \(f\) es sobreyectiva. Además, \(f\) es estrictamente creciente pues si \(x<y\), entonces \(x+\text{e}^x<y+\text{e}^y\) (la función exponencial es estrictamente creciente). Así, \(f\) es inyectiva y, por tanto, \(f^{-1}\) es continua (ver el artículo dedicado a las funciones continuas e inyectivas).

La derivada de la función \(f\) es \(f'(x)=1+\text{e}^x\neq0\,,\forall\,x\in\mathbb{R}\). Por el teorema de la función inversa \(f^{-1}\) es derivable en todo \(\mathbb{R}\) y se tiene que \((f^{-1})'(f(a))=\frac{1}{f'(a)}\). Así:

\(f(a)=1\Leftrightarrow a+\text{e}^a=1\Leftrightarrow a=0\) y entonces \((f^{-1})'(1)=\frac{1}{f'(0)}=\frac{1}{2}\).

\(f(a)=1+\text{e}\Leftrightarrow a+\text{e}^a\Leftrightarrow1+\text{e}\Leftrightarrow a=1\) y entonces \((f^{-1})'(1+\text{e})=\frac{1}{f'(1)}=\frac{1}{1+\text{e}}\).

Referencia bibliográfica. Aparicio C., Payá R. (1985) Análisis Matemático I (Secretariado de Publicaciones. Universidad de Granada).


Puedes descargar el artículo completo en pdf haciendo clic aquí.


Leer más ...

Funciones continuas e inyectivas

Nuestro último teorema afirmaba que toda función continua en un intervalo cerrado y acotado tiene máximo y mínimo absolutos, pero nada nos informa sobre los puntos en los que se alcanzan. Bajo la hipótesis adicional de que la función es inyectiva vamos a ver enseguida que el máximo y el mínimo se alcanzan en los extremos del intervalo, pero esto no es más que el punto de partida para resultados más importantes.

Lema 1.

Sean \(a\) y \(b\) números reales con \(a<b\), sea \(f:[a,b]\rightarrow\mathbb{R}\) una función continua e inyectiva y supongamos que \(f(a)<f(b)\). Entonces, para todo número real \(t\) verificando \(a<t<b\) se tiene que \(f(a)<f(t)<f(b)\).

Sea \(t\in(a,b)\) y supongamos, razonando por reducción al absurdo, que se tenga \(f(t)<f(a)\). Entonces, podemos aplicar el teorema del valor intermedio a la restricción de \(f\) al intervalo \([t,b]\), que es una función continua, obteniendo un punto \(c\) del intervalo \([t,b]\) tal que \(f(c)=f(a)\); por ser \(f\) inyectiva tenemos \(c=a\) y \(a\geqslant b\), lo cual es absurdo.

Si suponemos \(f(t)>f(b)\) y aplicamos el teorema del valor intermedio a la restricción de \(f\) al intervalo \([a,t]\), obtenemos un punto \(d\) del intervalo \([a,t]\) tal que \(f(d)=f(b)\), con lo que, otra vez, por ser \(f\) inyectiva tenemos \(b=d\leqslant t\) lo que también es absurdo.

Hemos probado así que \(f(a)\leqslant f(t)\leqslant f(b)\), pero, siendo \(f\) inyectiva, ambas desigualdades han de ser estrictas, como queríamos demostrar.

Nótese que el lema anterior puede aplicarse sucesivamente. Si \(c\in(a,b)\), tenemos, según el lema, \(f(a)<f(c)<f(b)\), pero podemos volver a aplicar el lema a las restricciones de \(f\) a los intervalos \([a,c]\) y \([c,b]\), obteniendo que

\[a<x<c<y<b\Rightarrow f(a)<f(x)<f(c)<f(y)<f(b)\]

y así sucesivamente. Observamos entonces que \(f\) tiene un comportamiento muy concreto, crece al crecer la variable. Este comportamiento se obtendrá de manera rigurosa en el próximo teorema, incluso en un ambiente más general, pero necesitamos concretar algunos conceptos para el enunciado de dicho teorema.

Definición.

Sea \(f:A\rightarrow\mathbb{R}\) una función real de variable real. Diremos que \(f\) es creciente (respectivamente, decreciente) cuando para cualesquiera dos puntos de \(A\), \(x\) e \(y\), en la situación \(x<y\), se tenga \(f(x)\leqslant f(y)\) (respectivamente, \(f(x)\geqslant f(y)\)). Nótese que las anteriores definiciones extienden a las dadas para sucesiones de números reales. Diremos que \(f\) es estrictamente creciente (respectivamente, estrictamente decreciente), cuando para cualesquiera dos puntos, \(x\) e \(y\), de \(A\), en la situación \(x<y\), se tenga \(f(x)<f(y)\) (respectivamente, \(f(x)>f(y)\)). Finalmente, diremos que \(f\) es monótona cuando sea creciente o decreciente y estrictamente monótona cuando sea estrictamente creciente o estrictamente decreciente.

Nótese que toda función estrictamente monótona es inyectiva, de hecho, una función monótona es estrictamente monótona si y sólo si es inyectiva. El recíproco de la primera afirmación anterior no es cierto. Por ejemplo, la función \(f:[0,2]\rightarrow\mathbb{R}\) definida por

\[f(x)=\left\{\begin{array}{ccc}
    x & \text{si} & 0\leqslant x<1 \\
    3-x & \text{si} & 1\leqslant x \leqslant 2
  \end{array}\right.
\]

es inyectiva pero no es estrictamente monótona.

Teorema 1.

Sea \(I\) un intervalo y \(f:I\rightarrow\mathbb{R}\) una función continua e inyectiva. Entonces \(f\) es estrictamente monótona.

Supongamos primeramente que \(I\) es un intervalo cerrado y acotado \([a,b]\), con \(a<b\) (si \(a=b\) no hay nada que demostrar). Supongamos también que \(f(a)<f(b)\) (no puede ser \(f(a)=f(b)\) por ser \(f\) inyectiva). Sean \(x,y\in[a,b]\), con \(x<y\). Si \(x=a\) se tiene, aplicando el lema anterior, \(f(x)<f(y)\), e igual ocurre si \(y=b\). Sean entonces \(x,y\in(a,b)\); aplicando el lema anterior tenemos \(f(x)<f(b)\) y aplicando otra vez el lema a la restricción de \(f\) al intervalo \([x,b]\) obtenemos \(f(x)<f(y)<f(b)\). Así pues hemos probado en este caso que \(f\) es estrictamente creciente. Si fuese \(f(a)>f(b)\), el razonamiento anterior, aplicado a la función \(-f\), demuestra que \(-f\) es estrictamente creciente, de donde \(f\) es estrictamente decreciente. Queda así demostrado el teorema en el caso particular de que \(I\) esa un intervalo cerrado y acotado.

Sea ahora \(I\) un intervalo cualquiera y supongamos que \(f\) no es estrictamente monótona, para llegar a una contradicción. Entonces existen \(x_1,\,y_1,\,x_2,\,y_2\in I\) tales que \(x_1<y_1\), \(f(x_1)>f(y_1)\), \(x_2<y_2\), \(f(x_2)<f(y_2)\). Sean \(a=\min\{x_1,x_2\}\) y \(b=\max\{y_1,y_2\}\); claramente \([a,b]\subset I\) y la restricción de \(f\) a \([a,b]\) es continua en inyectiva, luego por lo ya demostrado, es estrictamente monótona. Ello es absurdo pues \(x_1,\,y_1,\,x_2,\,y_2\in[a,b]\).

Como se dijo anteriormente, una función estrictamente monótona es siempre inyectiva. Sin embargo, una función estrictamente monótona no tiene por qué ser continua. Por ejemplo, la función \(g:[0,2]\rightarrow\mathbb{R}\)

\[g(x)=\left\{\begin{array}{ccc}
    x & \text{si} & 0\leqslant x\leqslant1 \\
    1+x & \text{si} & 1<x\leqslant 2
  \end{array}\right.
\]

es estrictamente creciente y no es continua. Damos a continuación un importante teorema que garantiza la continuidad de una función monótona con una hipótesis adicional.

Teorema 2.

Sea \(A\) un conjunto no vacío de números reales y \(f:A\rightarrow\mathbb{R}\) una función monótona tal que \(f(A)\) es un intervalo. Entonces \(f\) es continua.

Supongamos por ejemplo que \(f\) es creciente. Sea \(x_0\) un punto de \(A\) y \(\{x_n\}\) una sucesión creciente de puntos de \(A\), convergente a \(x_0\). Para cada natural \(n\) se tiene entonces \(x_n\leqslant x_{n+1}\leqslant x_0\) y, por ser \(f\) creciente, \(f(x_n)\leqslant f(x_{n+1})\leqslant f(x_0)\). Así, \(\{f(x_n)\}\) es una sucesión creciente y mayorada, luego convergente (véase el teorema 1 del artículo dedicado a las sucesiones monótonas). Sea \(l=\lim f(x_n)\); por ser \(f(x_n)\leqslant f(x_0)\,,\forall\,n\in\mathbb{N}\), se tendrá \(l\leqslant f(x_0)\) (ver el corolario 3 del artículo dedicado a las sucesiones acotada y a las propiedades de las sucesiones convergentes). Supongamos que fuese \(l<f(x_0)\) y sea \(\frac{l+f(x_0)}{2}=y\); se tiene \(f(x_n)<y<f(x_0)\,,\forall\,n\in\mathbb{N}\). Por ser \(f(A)\) un intervalo, existirá un punto \(x\) en \(A\) tal que \(f(x)=y\). Si fuese \(x<x_n\) para algún natural \(n\), se tendría, por ser \(f\) creciente, que \(y=f(x)\leqslant f(x_n)\), cosa que no ocurre, luego \(x\geqslant x_n\) para todo natural \(n\). Entonces \(x\geqslant x_0\), de donde \(f(x)\geqslant f(x_0)\), lo cual es una contradicción. Así, \(L=f(x_0)\) y \(\{f(x_n)\}\rightarrow f(x_0)\), como queríamos.

Un razonamiento enteramente análogo al anterior nos demostraría que si \(\{x_n\}\) es una sucesión decreciente de puntos de \(A\), convergente a \(x_0\), entonces \(\{f(x_n)\}\) converge a \(f(x_0)\). Así pues, para toda sucesión \(\{x_n\}\) monótona, de puntos de \(A\), convergente a \(x_0\) se tiene que \(\{f(x_n)\}\) converge a \(f(x_0)\). Por la caracterización de la continuidad, \(f\) es continua en \(x_0\) y, como \(x_0\) era un punto arbitrario de \(A\), \(f\) es continua en \(A\).

Finalmente, si \(f\) es decreciente, \(-f\) es creciente y \((-f)(A)=\{-y\,:\,y\in f(A)\}\) es, claramente, un intervalo, luego, por lo ya demostrado \(-f\) es continua, esto es, \(f\) es continua.

Lema 2.

Si \(f:A\rightarrow\mathbb{R}\) es una función estrictamente creciente (respectivamente, estrictamente decreciente), entonces \(f^{-1}:f(A)\rightarrow\mathbb{R}\) es también estrictamente creciente (respectivamente, estrictamente decreciente).

Sean \(x\,,y\in f(A)\) con \(x<y\). Si fuese \(f^{-1}(x)\geqslant f^{-1}(y)\), se tendría, por ser \(f\) creciente, \(f(f^{-1}(x))\geqslant f(f^{-1}(y))\), esto es, \(x\geqslant y\), contra lo supuesto. Luego \(f^{-1}(x)<f^{-1}(y)\) y \(f^{-1}\) es estrictamente creciente. Análogo razonamiento se usa para demostrar el caso en que \(f\) sea estrictamente decreciente.

Corolario 1.

Sea \(I\) un intervalo y \(f:I\rightarrow\mathbb{R}\) una función estrictamente monótona. Entonces \(f^{-1}\) es continua.

Por el lema anterior, \(f^{-1}\) es monótona y su imagen es el intervalo \(I\), luego \(f^{-1}\) es continua por el teorema 2.

Corolario 2.

Sea \(I\) un intervalo y \(f:I\rightarrow\mathbb{R}\) una función continua e inyectiva. Entonces \(f^{-1}\) es continua.

Por el teorema 1, \(f\) es estrictamente monótona luego, por el corolario anterior, \(f^{-1}\) es continua.

Ejercicios

1. Sea \(f:[-1,1]\rightarrow\mathbb{R}\) la función definida por

\[f(x)=\frac{2x}{1+|x|}\,,\forall\,x\in[-1,1]\]

Determínese la imagen de \(f\).

La función también la podemos escribir así:

\[f(x)=\left\{\begin{array}{ccc}
                  \displaystyle \frac{2x}{1-x} & \text{si} & -1\leqslant x<0\\
                  \displaystyle \frac{2x}{1+x} & \text{si} & 0\leqslant x\leqslant 1
                \end{array}
  \right.\]

Las restricciones de \(f\) a los intervalos \([-1,0)\) y \([0,1)\) son claramente continuas por ser funciones racionales. Así, \(f\) es continua en todo punto excepto, eventualmente, en cero. Pero si \(\{x_n\}\) es una sucesión de puntos de \([-1,1]\) convergente a cero, cualquiera de las sucesiones \(\{\frac{2x_n}{1-x_n}\}\), \(\{\frac{2x_n}{1+x_n}\}\) también convergen a cero. Por tanto, \(f\) es continua en todo punto del intervalo \([-1,1]\).

Sea ahora \(x\,,y\in[-1,0)\). Entonces

\[f(x)=f(y)\Leftrightarrow\frac{2x}{1-x}=\frac{2y}{1-y}\Leftrightarrow2x(1-y)=2y(1-x)\Leftrightarrow x-xy=y-yx\Leftrightarrow x=y\]

De la misma forma, dados \(x\,,y\in[0,1]\) se tiene que

\[f(x)=f(y)\Leftrightarrow\frac{2x}{1+x}=\frac{2y}{1+y}\Leftrightarrow2x(1+y)=2y(1+x)\Leftrightarrow x+xy=y+yx\Leftrightarrow x=y\]

Lo anterior demuestra que las restricciones de \(f\) a los intervalos \([-1,0)\) y \([0,1)\) son inyectivas, luego ambas estrictamente monótonas (teorema 1). Pero \(f(-1)=-1\), \(f(0)=0\), \(f(1)=1\). Esto indica que \(f\) es estrictamente creciente en el intervalo \([-1,1]\) y que la imagen de la función \(f\) es también el intervalo \([-1,1]\).

2. Sea \(f:\mathbb{R}\rightarrow\mathbb{R}\) una función continua en \(\mathbb{R}\). Probar que si la restricción de \(f\) a \(\mathbb{Q}\) es monótona, entonces \(f\) es monótona.

Supongamos que la restricción de \(f\) a \(\mathbb{Q}\) es creciente. Sean \(x\,,y\in\mathbb{R}\) en la situación \(x<y\). Entonces existen sucesiones \(\{x_n\}\), \(\{y_n\}\) convergentes a \(x\) e \(y\) respectivamente y cumpliendo que \(x_n\,,y_n\in\mathbb{Q}\,,x_n<x<y<y_n\,,\forall\,n\in\mathbb{N}\). Entonces \(f(x_n)\leqslant f(y_n)\,,\forall\,n\in\mathbb{N}\). Al ser \(f\) continua, la restricción de \(f\) a \(\mathbb{Q}\) también lo es y por tanto \(\{f(x_n)\}\rightarrow f(x)\) y \(\{f(y_n)\}\rightarrow f(y)\). Entonces \(f(x)\leqslant f(y)\) (ver proposición 5 del artículo dedicado a las sucesiones acotadas y a las propiedades de las sucesiones convergentes) y, por tanto, \(f\) es creciente.

3. Sea \(I\) un intervalo y \(f:I\rightarrow\mathbb{R}\) una función inyectiva. Analícese la relación entre las siguientes afirmaciones.

i) \(f\) es continua.

ii) \(f(I)\) es un intervalo.

iii) \(f\) es estrictamente monótona.

iv) \(f^{-1}\) es continua.

i) \(\Rightarrow\) ii) por el teorema del valor intermedio.

i) \(\Rightarrow\) iii) por el teorema 1.

i) \(\Rightarrow\) iv) por el corolario 2.

La afirmación ii) no implica necesariamente la i) pues la función \(f:[0,2]\rightarrow\mathbb{R}\) definida por

\[f(x)=\left\{\begin{array}{ccc}
                  x & \text{si} & 0\leqslant x<1\\
                  3-x & \text{si} & 1\leqslant x\leqslant 2
                \end{array}
  \right.\]

es inyectiva y su imagen es el intervalo \([0,2]\), pero no es continua en \(x_0=1\) (ver figura siguiente).

trozos 01

La afirmación ii) no implica necesariamente la iii). La misma función anterior puede servir de contraejemplo.

La afirmación ii) tampoco implica la iv) y sigue sirviendo la misma función anterior como contraejemplo. Es fácil comprobar que \(f^{-1}=f\), que no es continua en \(x_0=1\).

De iii) no se deduce i). La función \(g:[0,2]\rightarrow\mathbb{R}\) definida por

\[g(x)=\left\{\begin{array}{ccc}
                  x & \text{si} & 0\leqslant x<1\\
                  1+x & \text{si} & 1\leqslant x\leqslant 2
                \end{array}
  \right.\]

es estrictamente creciente (luego inyectiva) y no es continua en el punto \(x_0=1\) (ver figura siguiente).

trozos 02

De iii) tampoco se deduce ii) y la misma función anterior sirve de contraejemplo: obsérvese que la imagen de la función \(g\) es el conjunto \([0.1]\cup[2,3]\), que no es un intervalo.

iii) \(\Rightarrow\) iv) por el corolario 1.

La afirmación iv) no implica ninguna de las afirmaciones anteriores.

De las afirmaciones ii) y iii) se deduce la afirmación i) por el teorema 2 y, por tanto, también la afirmación iv), pues i) \(\Rightarrow iv)\).

De las afirmaciones ii) y iv) se deduce la afirmación i) pues si \(f\) es inyectiva también lo es \(f^{-1}\) y al ser ésta continua y estar definida en \(f(I)\), que es un intervalo, se tiene que la inversa de \(f^{-1}\), o sea \(f\), es continua (corolario 1). De estas dos afirmaciones se deduce también iii) ya que i) \(\Rightarrow\) iii).

De iii) y iv) no se deduce necesariamente ni i) ni ii).


Puedes descargar el artículo completo en pdf haciendo clic aquí.


Leer más ...

La propiedad de compacidad para funciones continuas

En un artículo anterior hemos obtenido dos importantes resultados relacionados con la continuidad de una función en un intervalo: el teorema de los ceros de Bolzano y el teorema del valor intermedio. De hecho, este último afirma que la imagen por una función continua de un intervalo es otro intervalo. Sin embargo el intervalo imagen no tiene por qué ser del mismo tipo que el de partida (podemos ver ejemplos de esto en los ejercicios 4, 5 y 6 del mencionado artículo). No obstante hay un tipo de intervalos que sí se conserva.

Teorema (propiedad de compacidad).

La imagen por una función continua de un intervalo cerrado y acotado es un intervalo cerrado y acotado.

Sea \(f:[a,b]\rightarrow\mathbb{R}\) continua en \([a,b]\). Sabemos que \(f([a,b])\) es un intervalo.

Empezaremos probando que \(f([a,b])\) está acotado. De lo contrario el conjunto \(\{|f(x)|\,:\,x\in[a,b]\}\) no está mayorado, luego dado un natural \(n\) debe existir un punto \(x_n\in[a,b]\) tal que \(|f(x_n)|>n\). La sucesión \(\{x_n\}\) así construida es acotada, luego por el teorema de Bolzano-Weierstrass admite una sucesión parcial \(\{x_{\sigma(n)}\}\) convergente. Sea \(x=\lim x_{\sigma(n)}\). Por ser \(a\leqslant x_{\sigma(n)}\leqslant b\,,\,\forall\,n\in\mathbb{N}\), tenemos que \(x\in[a,b]\) y por ser \(f\) continua en \(x\) la sucesión \(\{f(x_{\sigma(n)})\}\) converge a \(f(x)\) y en particular es una sucesión acotada. Ello es una contradicción, pues entonces existe un número real \(M\) tal que \(|f(x_{\sigma(n)})|\leqslant M,\,\forall\,n\in\mathbb{N}\), de donde para cada natural \(n\) se tiene que \(n\leqslant\sigma(n)<|f(x_{\sigma(n)})|\leqslant M\). Así pues, \(f([a,b])\) es acotado.

Sean \(\alpha=\inf f([a,b])\) y \(\beta=\sup f([a,b])\). Sea \(\{y_n\}\) una sucesión de puntos de \(f([a,b])\) convergente a \(\beta\) y para cada natural \(n\) sea \(t_n\in[a,b]\) tal que \(f(t_n)=y_n\). Entonces \(\{t_n\}\) es una sucesión acotada; sea \(\{t_{\sigma(n)}\}\) una sucesión parcial convergente a un \(t\in[a,b]\). Por ser \(f\) continua en \(t\) tenemos que \(\{f(t_{\sigma(n)})\}\) converge a \(f(t)\), pero \(\{f(t_{\sigma(n)})\}=\{y_{\sigma(n)}\}\) e \(\{y_{\sigma(n)}\}\) converge a \(\beta\), de donde se deduce que \(\beta=f(t)\in f([a,b])\). El mismo razonamiento puede hacerse para probar que \(\alpha\in f([a,b])\) (\(\alpha\) también es límite de una sucesión de puntos de \(f([a,b])\)). Por el teorema del valor intermedio tenemos que \([\alpha,\beta]\subset f([a,b])\) pero la inclusión contraria es trivialmente cierta y, por tanto, \(f([a,b])=[\alpha,\beta]\), lo que demuestra el teorema.

Obsérvese que la hipótesis de que el intervalo de definición de la función, en el teorema anterior, sea cerrado y acotado, es esencial en la demostración; si hubiésemos tenido un intervalo no acotado las sucesiones \(\{x_n\}\) y \(\{t_n\}\) que aparecen en la demostración no tendrían por qué ser acotadas, mientras que si hubiéramos tenido un intervalo acotado pero no cerrado los límites \(x\) y \(t\) de las parciales convergentes extraídas no tendrían por qué pertenecer al intervalo.

Vamos a introducir ahora alguna terminología que nos permita enunciar el teorema anterior de manera más sugerente.

Sea \(f:A\rightarrow\mathbb{R}\) una función real de variable real. Diremos que \(f\) está acotada (respectivamente mayorada, minorada) si su imagen \(f(A)=\{f(x)\,:\,x\in A\}\) es un conjunto acotado (respectivamente mayorado, minorado) de números reales. Así pues, simbólicamente:

\(f\) está mayorada \(\Leftrightarrow\exists\,K\in\mathbb{R}\,:\,K\geqslant f(x),\,\forall x\in A\).

\(f\) está minorada \(\Leftrightarrow\exists\,k\in\mathbb{R}\,:\,k\leqslant f(x),\,\forall x\in A\).

\(f\) está acotada \(\Leftrightarrow\exists\,M\in\mathbb{R}^+\,:\,M\geqslant|f(x)|,\,\forall x\in A\).

Esta definición extiende a la que en su momento se dio para sucesiones de números reales.

Diremos que \(f:A\rightarrow\mathbb{R}\) tiene máximo (respectivamente mínimo) si su imagen \(f(A)\) tiene máximo (respectivamente mínimo). Si \(x_0\in A\) es tal que \(f(x_0)=\max f(A)\) (respectivamente \(f(x_0)=\min f(A)\)), diremos que \(f\) alcanza su máximo (respectivamente mínimo) absoluto en el punto \(x_0\). Es conveniente observar que una función puede alcanzar su máximo o su mínimo en más de un punto, lo cual no significa naturalmente que \(f(A)\) tenga más de un máximo o más de un mínimo. Debe distinguirse claramente el punto \(x_0\) donde se alcanza el máximo o el mínimo absoluto de una función del máximo o mínimo absoluto alcanzado, \(f(x_0)\).

Con la terminología anterior, la propiedad de compacidad puede enunciarse diciendo que toda función continua en un intervalo cerrado y acotado está acotada y tiene máximo y mínimo absolutos (el hecho de que la imagen sea un intervalo viene ya obligado por el teorema del valor intermedio). Enunciado el teorema en la forma anterior, cabe volver a analizar la demostración para ver como juega la hipótesis de que el conjunto de definición sea un intervalo cerrado y acotado. Lo que realmente se utiliza de \([a,b]\) para probar que \(f\) está acotada y tiene máximo y mínimo absolutos es que toda sucesión de puntos de \([a,b]\) admita una parcial convergente a un punto de \([a,b]\). Se puede comprobar sin dificultad que los únicos intervalos con esta propiedad son los cerrados y acotados, pero existen conjuntos no vacíos de números reales que no son intervalos y que cumplen la propiedad anterior, como por ejemplo los conjuntos finitos o el conjunto \([0,1]\cup[2,3]\).

Proponemos a continuación cuatro ejercicios relacionados con la propiedad de compacidad (con sus respectivas soluciones).

Ejercicios

1. Sean \(f:(0,1)\rightarrow\mathbb{R}\) y \(g:\mathbb{R}\rightarrow\mathbb{R}\) definidas por \(f(x)=x,\,\forall\,x\in(0,1)\); \(g(x)=\left\{\begin{array}{ccc}
               \frac{x}{1+x} & \text{si} & x\geqslant0 \\
               \frac{x}{1-x} & \text{si} & x<0
             \end{array}
      \right.\). Comprobar que \(f\) y \(g\) son continuas y acotadas pero no tienen máximo ni mínimo absolutos.

\(f\) es continua en todo \(\mathbb{R}\) por ser polinómica y, por el carácter local de la continuidad, también lo es en el intervalo \((0,1)\). La imagen de la función \(f\) vuelve a ser el intervalo \((0,1)\) (\(f\) es la función identidad) que no tiene ni máximo ni mínimo, luego \(f\) no tiene máximo ni mínimo absolutos.

Usando el carácter local de la continuidad \(g\) es claramente continua en \(\mathbb{R}^+\) y en \(\mathbb{R}^-\) pues las respectivas restricciones de \(g\) a \(\mathbb{R}^+\) y \(\mathbb{R}^-\) son funciones racionales, luego continuas. En \(x_0=0\) también es continua pues si \(\{x_n\}\) es una sucesión de números reales convergente a \(0\), la sucesión \(\{g(x_n)\}\) converge a \(g(0)=0\) (basta observar para ello que \(\{g(x_n)\}\) es de la forma \(\left\{\frac{x_n}{1+x_n}\right\}\) o \(\left\{\frac{x_n}{1-x_n}\right\}\) que claramente convergen a cero pues \(\{x_n\}\rightarrow0\)). Así pues \(g\) es continua.

compacidad 01

Dado \(x_0\in\mathbb{R}_0^+\) se tiene \(0\leqslant x<1+x\Leftrightarrow 0\leqslant\frac{x}{1+x}<1\). Ahora bien, dado \(x\in\mathbb{R}^-\), \(-x\in\mathbb{R}^+\) y entonces por los visto anteriormente \(0<\frac{-x}{1-x}<1\Leftrightarrow 0>\frac{x}{1-x}>-1\), o lo que es lo mismo, \(-1<\frac{x}{1-x}<0\). Esto demuestra que la imagen de la función \(g\) es el intervalo \((-1,1)\), que no tiene máximo ni mínimo. Por tanto \(g\) no tiene ni máximo ni mínimo absolutos (véase la representación gráfica de la función en la figura anterior).

2. Probar que si \(f:\mathbb{R}\rightarrow\mathbb{R}\) es una función continua en \(0\), entonces existe un número real y positivo \(\delta\) tal que la restricción de \(f\) al intervalo \([-\delta,\delta]\) está acotada.

Al ser \(f\) es continua en \(0\) se tiene que

\[\forall\,\varepsilon>0,\ \exists\,\delta'>0\,:\,|x|<\delta'\Rightarrow|f(x)-f(0)|<\varepsilon\]

Tomando \(\varepsilon=1\) tenemos entonces que

\[|f(x)|-|f(0)|\leqslant|f(x)-f(0)|<1\Rightarrow|f(x)|<|f(0)|+1\]

Esto demuestra que \(f\) está acotada en \((-\delta',\delta')\). Tomando \(\delta=\frac{\delta'}{2}\), tenemos que \(f\) está acotada en \([-\delta,\delta]\).

3. Sea \(I\) un intervalo cerrado y acotado y \(f:I\rightarrow\mathbb{R}\) una función continua en \(I\). Supongamos que existe una sucesión \(\{x_n\}\) de puntos de \(I\) tal que \(f(x_n)=\frac{1}{n},\,\forall\,n\in\mathbb{N}\). Pruébese que \(0\in f(I)\). Muéstrese con ejemplos que la hipótesis de que el intervalo \(I\) sea cerrado y acotado no puede suprimirse.

Por ser \(I\) cerrado y acotado y \(f\) continua en \(I\), \(f(I)\) es un intervalo cerrado y acotado: \([\alpha,\beta]\). La sucesión \(\{\frac{1}{n}\}\) converge a \(0\) y como \(\alpha\leqslant\frac{1}{n}\leqslant\beta,\,\forall\,n\in\mathbb{N}\), tenemos que \(0\in[\alpha,\beta]=f(I)\).

Sea \(f:(0,1]\rightarrow\mathbb{R}\) definida por \(f(x)=x,\,\forall\,x\in[0,1]\). Sea \(\{x_n\}=\{\frac{1}{n}\}\). Entonces tenemos que \(\{f(x_n)\}=\{f(\frac{1}{n})\}=\{\frac{1}{n}\}\). La imagen de la función \(f\), por ser ésta la identidad, es el intervalo \((0,1]\) al cual, obviamente, no pertenece el cero. Así se muestra que la hipótesis de que el intervalo \(I\) sea cerrado y acotado efectivamente no puede suprimirse.

4. Sea \(f:[-1,1]\rightarrow\mathbb{R}\) la función definida por \(f(x)=\frac{x^2}{1+x^2},\,\forall\,x\in[-1,1]\). Determínese la imagen de \(f\).

La imagen de \(f\) es un intervalo cerrado y acotado. Sea éste \([\alpha,\beta]\). Como \(f(x)=\frac{x^2}{1+x^2}\geqslant0\), \(\forall\,x\in[-1,1]\) y \(f(0)=0\) entonces \(\alpha=0\) (\(f\) tiene en \(0\) un mínimo absoluto y éste toma el valor \(0\)). Supongamos que \(\exists\,x\in[-1,1]\) tal que \(f(x)=\frac{x^2}{1+x^2}>\frac{1}{2}\). Entonces \(1+x^2<2x^2\Leftrightarrow1<x^2\), pero esto es absurdo pues \(-1\leqslant x\leqslant1\). Así pues \(f(x)=\frac{x^2}{1+x^2},\,\forall\,x\in[-1,1]\). Como \(f(1)=\frac{1}{2}\), entonces \(\beta=1\) (\(f\) tiene en \(1\) un máximo absoluto y éste toma el valor \(\frac{1}{2}\)). De esta forma la imagen de \(f\) es el intervalo \([0.\frac{1}{2}]\) (ver a continuación la representación gráfica de la función \(f\)).

compacidad 02


Puedes descargar el artículo completo en pdf haciendo clic aquí.


Leer más ...

Teorema de los ceros de Bolzano

Continuidad de una función en un punto

Sabemos que una función \(f\) es continua en un punto \(x=a\) cuando se cumplen las tres condiciones siguientes:

  • Existe, y es finito, el límite de la función en el punto \(x=a\), es decir, \(\displaystyle\lim_{x\to a}f(x)=L\,,\ L\in\mathbb{R}\).
  • La función \(f\) está definida en el punto, o lo que es lo mismo, existe la imagen de la función en el punto \(x=a\), es decir, existe \(f(a)\).
  • El límite de la función en el punto \(x=a\) es igual a la imagen de la función en dicho punto: \(\displaystyle\lim_{x\to a}f(x)=L=f(a)\).

La continuidad es una propiedad local. Lo que queremos decir con esto es que para estudiar la continuidad de una función en un punto nos interesa saber lo que ocurre "en las cercanías del punto". De hecho, el concepto de límite obliga a que, supuesto que tomemos un entorno cualquiera de \(L\), \((L-\varepsilon\,,\,L+\varepsilon)\), en el eje \(Y\), siempre podremos encontrar un entorno del punto \(a\) en el eje \(X\), \((a-\delta\,,\,a+\delta)\), cuyas imágenes estén contenidas en el entorno anterior \((L-\varepsilon\,,\,L+\varepsilon)\). Esta idea se transcribe en lenguaje matemático así:

\[\lim_{x\to a}f(x)=L\Leftrightarrow \forall\,\varepsilon>0\,,\,\exists\,\delta>0\,:\,a-\delta<x<a+\delta\,\Rightarrow\,L-\varepsilon<f(x)<L+\varepsilon\]

El concepto anterior lo extenderemos de manera natural a un intervalo de números reales.

Continuidad de una función en un intervalo

Se dice que una función es continua en un intervalo \(I\) de \(\mathbb{R}\) si es continua en cada uno de los puntos del intervalo \(I\):

\[f\ \text{es continua en}\ I\Leftrightarrow f\ \text{es continua en}\ a,\,\forall\,a\in I\]

El intervalo \(I\) puede ser abierto o cerrado, abierto por uno de sus extremos y cerrado por el otro; también puede ser una semirrecta abierta o cerrada del tipo \((-\infty\,,\,3]\) o \((-2\,,\,+\infty)\). El intervalo también puede ser todo el conjunto \(\mathbb{R}\) de los números reales. Cuando el intervalo es cerrado en uno de sus extremos, entenderemos la continuidad en el punto extremo como la continuidad lateral, bien por la izquierda (si el intervalo es cerrado por la derecha), bien por la derecha (si el intervalo es cerrado por la izquierda).

Todas las funciones elementales conocidas (polinómicas, racionales, exponenciales, logarítmicas, trigonométricas) son continuas en sus dominios de definición. Construir funciones que no sean continuas no es difícil. Basta tomar una función definida por trozos de la forma

\[f(x)=\begin{cases}g(x)&\text{si}&x\leqslant a\\h(x)&\text{si}&x>a\end{cases}\]

donde \(g\) y \(h\) son funciones continuas en el punto \(a\) con \(g(a)\neq h(a)\).

Teorema de los ceros de Bolzano

El teorema de los ceros de Bolzano formaliza la idea de que si una función es continua en un intervalo cerrado y las imágenes de los extremos tienen distinto signo, entonces existe algún punto del interior del intervalo donde la imagen se anula (ver la imagen con la que se encabeza este artículo).

Teorema de los ceros de Bolzano

Sea \(f\) una función continua en un intervalo cerrado \([a\,,\,b]\) y supongamos que el signo de \(f(a)\) es distinto que el signo de \(f(b)\). Entonces existe \(c\in(a\,,\,b)\) tal que \(f(c)=0\).

El teorema de los ceros de Bolzano recibe su nombre en honor al matemático y filósofo checo Bernard Bolzano. Su demostración formal requiere de algunas premisas previas. No es un contenido mínimo para las matemáticas de bachillerato, pero puedes verla aquí.

También tienes una presentación interesante sobre el teorema de los ceros de Bolzano aquí.

Consecuencias del teorema de los ceros de Bolzano

Teorema de los valores intermedios

Sea \(f\) una función continua en un intervalo cerrado \([a\,,\,b]\). Entonces \(f\) toma todos los valores intermedios entre \(f(a)\) y \(f(b)\).

Es decir, cualquiera que sea el número \(k\) comprendido entre \(f(a)\) y \(f(b)\), existe \(c\in(a\,,\,b)\), tal que \(f(c)=k\).

¿Serías capaz de demostrarlo? Usando el teorema de los ceros de Bolzano la demostración del teorema anterior es un ejercicio sencillo.

Otra consecuencia inmediata del teorema anterior y, por tanto, del teorema de los ceros de Bolzano es la siguiente:

Si \(f\) y \(g\) son funciones continuas en \([a\,,\,b]\) con \(f(a)<g(a)\) y \(f(b)>g(b)\), entonces existe \(c\in(a\,,\,b)\), tal que \(f(c)=g(c)\).

Teorema de Weierstrass

Sea \(f\) una función continua en un intervalo cerrado \([a\,,\,b]\). Entonces \(f\) tiene un máximo y un mínimo absoluto en ese intervalo. Es decir, existen números \(c\) y \(d\) del intervalo \([a\,,\,b]\) para los cuales se cumple que:

\[\forall\,x\in[a\,,\,b]\ \text{es}\ f(d)\leqslant f(x)\leqslant f(c)\]

Un bonito ejercicio de aplicación del teorema de los ceros de Bolzano es el siguiente.

Ejercicio

Suponiendo que la temperatura varía de manera continua a lo largo del Ecuador, pruébese que, en cualquier instante, existen dos puntos antípodas sobre el Ecuador que se hallan a la misma temperatura

Consideremos la función temperatura definida sobre una circunferencia (Ecuador) \(T:[0,\,2\pi]\rightarrow\mathbb{R}\) que según la hipótesis es continua y sea ahora la función \(f:[0,\,\pi]\rightarrow\mathbb{R}\) definida por \(f(x)=T(x+\pi)-T(x)\), que es continua por serlo \(T\).

Se tiene, por un lado, que \(f(0)=T(\pi)-T(0)\) y, por otro, que \(f(\pi)=T(2\pi)-T(\pi)=T(0)-T(\pi)\).

Si \(T(\pi)-T(0)=0\Rightarrow T(\pi)=T(0)\) y habríamos terminado (\(0\) y \(\pi\) son, evidentemente, puntos antípodas).

Supongamos que \(T(\pi)-T(0)\neq 0\). Entonces puede ocurrir que \(f(0)=T(\pi)-T(0)>0\), con lo que \(f(\pi)=T(0)-T(\pi)<0\). O puede ocurrir que \(f(0)=T(\pi)-T(0)<0\), con lo que , en este caso será \(f(\pi)=T(0)-T(\pi)>0\).

En cualquier caso, aplicando el teorema de los ceros de Bolzano, existe \(c\in(0,\,\pi)\) tal que \(f(c)=T(c+\pi)-T(c)=0\), es decir, \(T(c+\pi)=T(c)\), tal y como queríamos demostrar.

Leer más ...
Suscribirse a este canal RSS

lasmatematicas.eu

Aplicaciones

Sígueme

webs de matemáticas