Menu
¿Necesitas ayuda con las matemáticas? ¿Piensas que nunca serás capaz de entenderlas?

¿Necesitas ayuda con las matemática…

Ahora puedes tener un pro...

Completando cuadrados. Aplicación al cálculo de primitivas o integrales indefinidas

Completando cuadrados. Aplicación a…

Supongamos que me piden c...

La Universidad Europea de Madrid (UEM)

La Universidad Europea de Madrid (U…

La Universidad Europea de...

Cuadratura de un segmento de parábola

Cuadratura de un segmento de parábo…

Una forma de acercarse al...

Ejercicios de aplicaciones de las derivadas y del teorema del valor medio

Ejercicios de aplicaciones de las d…

Se proponen a continuaci&...

Aplicaciones de las derivadas. El teorema del valor medio

Aplicaciones de las derivadas. El t…

Ya hemos hablado en un pa...

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. R…

Cuando en las matem&aacut...

Series infinitas de números reales. Series convergentes

Series infinitas de números reales.…

Las sucesiones de n&uacut...

La paradoja de Zenón

La paradoja de Zenón

El filósofo griego...

Prev Next

Completando cuadrados. Aplicación al cálculo de primitivas o integrales indefinidas

Supongamos que me piden calcular una primitva de la función \(f(x)=\dfrac{1}{x^2-3x+5}\). O lo que es lo mismo, me piden calcular la siguiente integral indefinida:

\[\int\frac{1}{x^2-3x+5}\,dx\]

Naturalmente intentaré descomponer la fracción \(\dfrac{1}{x^2-3x+5}\) en fracciones simples. Pero esto no es posible porque el polinomio \(x^2-3x+5\) no tiene raíces reales (al intentar resolver la ecuación de segundo grado el discriminante es menor que cero).

En estos casos se procede a utilizar una técnica conocida como "completar cuadrados". Veamos cómo funciona.

Se trata de escribir el polinomio \(x^2-3x+5\) como un cuadrado más una cierta cantidad. Es decir, tenemos que conseguir el polinomio \(x^2-3x+5\) "completando un cuadrado". Eso, como veremos, nos permitirá calcular la intergral indefinida.

Observemos que los coeficientes del polinomio \(x^2-3x+5\) son \(a=1\), \(b=-3\) y \(c=5\).

En un primer paso lo que haremos es multiplicar por \(4a\), que en este caso es \(4\). De este modo el polinomio se convierte en \(4x^2-12x+20\). Obsérvese que el primer término es el cuadrado de \(2x\). En general si multiplicamos por \(4a\) el primer término se convertirá en \(4a^2\) que es el cuadrado de \(2a\).

En un segundo paso vamos a sumar y a restar \(b^2\). En nuestro caso \(b^2=9\), con lo que tenemos \(4x^2-12x+9-9+20\). Esta última expresión la podemos escribir también así \((2x-3)^2+11\).

¿Qué hemos hecho? En realidad hemos escrito el polinomio de \(x^2-3x+5\) de otra manera:

\[x^2-3x+5=\frac{1}{4}(4x^2-12x+9-9+20)=\frac{1}{4}((2x-3)^2+11)\]

Ahora podemos escribir la integral indefinida así:

\[\int\frac{1}{x^2-3x+5}\,dx=\int\frac{1}{\frac{1}{4}((2x-3)^2)+11)}\,dx=4\int\frac{1}{(2x-3)^2+11}\,dx\]

Esta última integral la podemos retocar hasta conseguir resolverla:

\[4\int\frac{1}{(2x-3)^2+11}\,dx=4\int\frac{\displaystyle\frac{1}{11}}{\displaystyle\frac{(2x-3)^2}{11}+1}\,dx=\]

\[=\frac{4}{11}\int\frac{1}{\displaystyle\left(\frac{2x-3}{\sqrt{11}}\right)^2+1}\,dx=\frac{4}{11}\cdot\frac{\sqrt{11}}{2}\int\frac{\displaystyle\frac{2}{\sqrt{11}}}{\displaystyle\left(\frac{2x-3}{\sqrt{11}}\right)^2+1}\,dx\]

Por tanto

\[\int\frac{1}{x^2-3x+5}\,dx=\frac{2\sqrt{11}}{11}\cdot\text{arctg}\left(\frac{2x-3}{\sqrt{11}}\right)+C\]

Donde hemos utilizado que

\[\int\frac{f'(x}{f(x)^2+1}\,dx=\text{arctg}\,f(x)+C\]

En general si el polinomio \(ax^2+bx+cx\) no tiene raíces reales, es posible demostrar que

\[\int\frac{1}{ax^2+bx+c}\,dx=\frac{2}{\sqrt{4ac-b^2}}\cdot\text{arctg}\frac{2ax+b}{\sqrt{4ac-b^2}}+C\]

Puedes ver el desarrollo completo aquí.

Leer más ...

Igualdades notables, completando cuadrados y resolviendo ecuaciones cuadráticas

Las igualdades o identidades notables y una técnica que utiliza éstas para completar cuadrados fue algo muy común en el pasado para resolver ecuaciones de segundo grado. El objetivo consiste en transformar la ecuación original en otra de primer grado, tras extraer una raíz cuadrada. Antes que nada recordemos las igualdades o identidades notables, en concreto el cuadrado de una suma y el cuadrado de una diferencia.

\[(a+b)^2=a^2+b^2+2ab\]

\[(a-b)^2=a^2+b^2-2ab\]

Por ejemplo:

\[(x+5)^2=x^2+5^2+2\cdot x\cdot5=x^2+10x+25\]

\[(x-4)^2=x^2+4^2-2\cdot x\cdot4=x^2-8x+16\]

A veces también se puede conseguir un cuadrado de una suma o de una diferencia observando con detenimiento un polinomio de segundo grado:

\[x^2+6x+9=x^2+2\cdot x\cdot 3+3^2=(x+3)^2\]

\[4x^2-24x+36=(2x)^2-2\cdot (2x)\cdot6+6^2=(2x-6)^2\]

En general podemos completar cuadrados sumando y restando una cantidad adecuada. Veamos un par de ejemplos:

\[x^2+6x=x^2+2\cdot x\cdot3+3^2-3^2=(x+3)^2-9\]

\[x^2-8x=x^2-2\cdot x\cdot4+4^2-4^2=(x-4)^2-16\]

Esta técnica es adecuada para resolver algunas ecuaciones de segundo grado sencillas. Por ejemplo, para resolver la ecuación \(x^2+6x=16\) procedemos del siguiente modo:

\[x^2+6x=16\Leftrightarrow x^2+2\cdot x\cdot3+3^2-3^2=16\Leftrightarrow (x+3)^2-9=16\Leftrightarrow\]

\[\Leftrightarrow (x+3)^2=16+9\Leftrightarrow(x+3)^2=25\Leftrightarrow\begin{cases}x+3=5\Leftrightarrow x=2\\x+3=-5\Leftrightarrow x=-8\end{cases}\]

De manera similar podemos resolver esta otra \(x^2-4x=21\):

\[x^2-4x=21\Leftrightarrow x^2-2\cdot x\cdot2+2^2-2^2=21\Leftrightarrow(x-2)^2-4=21\Leftrightarrow\]

\[\Leftrightarrow(x-2)^2=21+4\Leftrightarrow(x-2)^2=25\Leftrightarrow\begin{cases}x-2=5\Leftrightarrow x=7\\x-2=-5\Leftrightarrow x=-3\end{cases}\]

En general, para resolver la ecuación \(x^2+px=q\), procedemos así:

\[x^2+px=q\Leftrightarrow x^2+2\cdot x\cdot\frac{p}{2}=q\Leftrightarrow x^2+2\cdot x\cdot\frac{p}{2}+\left(\frac{p}{2}\right)^2-\left(\frac{p}{2}\right)^2=q\Leftrightarrow\]

\[\Leftrightarrow\left(x+\frac{p}{2}\right)^2-\frac{p^2}{4}=q\Leftrightarrow\left(x+\frac{p}{2}\right)^2=\frac{p^2}{4}+q\Leftrightarrow x+\frac{p}{2}=\pm\sqrt{\frac{p^2}{4}+q}\Leftrightarrow\]

\[\Leftrightarrow x=-\frac{p}{2}\pm\sqrt{\frac{p^2+4q}{4}}\Leftrightarrow x=-\frac{p}{2}\pm\frac{\sqrt{p^2+4q}}{2}\Leftrightarrow x=\frac{-p\pm\sqrt{p^2+4q}}{2}\]

Ahora, si aprenderemos la fórmula, podemos resolver la ecuación anterior \(x^2+6x=16\) sin más que sustituir \(p\) por \(6\) y \(q\) por \(16\):

\[x=\frac{-6\pm\sqrt{6^2+4\cdot16}}{2}=\frac{-6\pm\sqrt{36+64}}{2}=\frac{-6\pm\sqrt{100}}{2}=\]

\[=\frac{-6\pm10}{2}\Rightarrow\begin{cases}x=\frac{-6+10}{2}=\frac{4}{2}=2\\x=\frac{-6-10}{2}=\frac{-16}{2}=-8\end{cases}\]

Todo este proceso de completar cuadrados da pie a resolver la ecuación de segundo grado completa. Por ejemplo, si queremos resolver la ecuación \(2x^2+5x-33=0\), lo que tenemos que hacer es sacar factor común el coeficiente de \(x^2\) (en este caso el número \(2\)) y luego proceder a completar el cuadrado. Vamos a verlo:

\[2x^2+5x-33=0\Leftrightarrow2\left(x^2+\frac{5}{2}x-\frac{33}{2}\right)=0\Leftrightarrow x^2+\frac{5}{2}x-\frac{33}{2}=0\Leftrightarrow\]

\[\Leftrightarrow x^2+2\cdot x\cdot\frac{5}{4}+\left(\frac{5}{4}\right)^2-\left(\frac{5}{4}\right)^2-\frac{33}{2}=0\Leftrightarrow\left(x+\frac{5}{4}\right)^2-\frac{25}{16}-\frac{33}{2}=0\Leftrightarrow\]

\[\Leftrightarrow\left(x+\frac{5}{4}\right)^2=\frac{25}{16}+\frac{33}{2}\Leftrightarrow\left(x+\frac{5}{4}\right)^2=\frac{289}{16}\Leftrightarrow x+\frac{5}{4}=\pm\sqrt{\frac{289}{16}}\Leftrightarrow\]

\[\Leftrightarrow\begin{cases}x+\frac{5}{4}=\frac{17}{4}\Leftrightarrow x=\frac{17}{4}-\frac{5}{4}=\frac{12}{4}=3\\\,\\x+\frac{5}{4}=-\frac{17}{4}\Leftrightarrow x=-\frac{17}{4}-\frac{5}{4}=-\frac{22}{4}=-\frac{11}{2}\end{cases}\]

Finalmente, utilizando este método, resolvamos la ecuación general de segundo grado completa, \(ax^2+bx+c=0\), para obtener la conocida fórmula que proporciona las soluciones.

\[ax^2+bx+c=0\Leftrightarrow a\left(x^2+\frac{b}{a}x+\frac{c}{a}\right)=0\Leftrightarrow x^2+\frac{b}{a}x+\frac{c}{a}=0\Leftrightarrow\]

\[\Leftrightarrow x^2+2\cdot x\cdot\frac{b}{2a}+\left(\frac{b}{2a}\right)^2-\left(\frac{b}{2a}\right)^2+\frac{c}{a}=0\Leftrightarrow\left(x+\frac{b}{2a}\right)^2-\frac{b^2}{4a^2}+\frac{c}{a}=0\Leftrightarrow\]

\[\Leftrightarrow\left(x+\frac{b}{2a}\right)^2=\frac{b^2}{4a^2}-\frac{c}{a}\Leftrightarrow \left(x+\frac{b}{2a}\right)^2=\frac{b^2-4ac}{4a^2}\Leftrightarrow x+\frac{b}{2a}=\pm\sqrt{\frac{b^2-4ac}{2a}}\Leftrightarrow\]

\[\Leftrightarrow x=-\frac{b}{2a}\pm\frac{\sqrt{b^2-4ac}}{2a}\Leftrightarrow x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\]

Como reflexión final, decir que no estaría mal relacionar las igualdades notables con las soluciones de una ecuación de segundo grado a través del método mencionado en este artículo de completar cuadrados. Esto se podría hacer, por ejemplo en el curso final de la Educación Secundaria Obligatoria. Así, los alumnos verían la utilidad de las igualdades notables, recapacitarían sobre las mismas y entenderían que las soluciones de una ecuación de segundo grado son algo más que la aplicación puramente mecánica de una fórmula.

Leer más ...
Suscribirse a este canal RSS

lasmatematicas.eu

Aplicaciones

Sígueme

webs de matemáticas