Menu
Distancia entre dos rectas que se cruzan. Perpendicular común

Distancia entre dos rectas que se c…

En un espacio de tres dim...

La regla de Cramer

La regla de Cramer

Consideremos un sistema d...

¿Necesitas ayuda con las matemáticas? ¿Piensas que nunca serás capaz de entenderlas?

¿Necesitas ayuda con las matemática…

Ahora puedes tener un pro...

Completando cuadrados. Aplicación al cálculo de primitivas o integrales indefinidas

Completando cuadrados. Aplicación a…

Supongamos que me piden c...

La Universidad Europea de Madrid (UEM)

La Universidad Europea de Madrid (U…

La Universidad Europea de...

Cuadratura de un segmento de parábola

Cuadratura de un segmento de parábo…

Una forma de acercarse al...

Ejercicios de aplicaciones de las derivadas y del teorema del valor medio

Ejercicios de aplicaciones de las d…

Se proponen a continuaci&...

Aplicaciones de las derivadas. El teorema del valor medio

Aplicaciones de las derivadas. El t…

Ya hemos hablado en un pa...

Prev Next

Derivada de la función compuesta. Regla de la cadena

La regla de la cadena o derivada de la función compuesta La regla de la cadena o derivada de la función compuesta

Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de la derivada de una función en un punto usando la definición y aprovechando el cálculo de límites. A continuación, se introducen inmediatamente las reglas de derivación: de un número por una función, de la suma y la resta, del producto y del cociente, así como la derivada de la función compuesta o regla de la cadena. También se dan las derivadas de las funciones elementales (puedes consultar este artículo), generalmente mediante una tabla de derivadas, que suele aparecer dividida en dos: la derivada de la función directamente y la derivada de la función compuesta en la que se hace uso de la regla de la cadena.

Es probable que en bachillerato también se demuestren, usando la definición de derivada de una función en un punto, algunas de las reglas de derivación (por ejemplo la derivada de la suma o del producto de dos funciones), pero lo que no se suele hacer es la demostración de la derivada de la función compuesta, conocida más habitualmente por regla de la cadena. Aprovechando que en esta Web hemos dedicado artículos a hablar sobre la composición de funciones, función inversa de una función y sobre el concepto de convergencia de una sucesión, vamos a proceder a la demostración de la regla de la cadena. Aprovecharemos también para enunciar y demostrar el teorema de la función inversa. Finalmente, y como consecuencia de lo anterior, demostraremos un resultado conocido por todos los estudiantes de matemáticas en bachillerato: de todas las funciones exponenciales, la de base el número \(\text{e}\) es la única que coincide con su función derivada. Este resultado justifica que la función exponencial de base \(\text{e}\) sea la función exponencial por excelencia. De hecho, a la función exponencial de base \(\text{e}\) se la llama, simplemente, función exponencial.

Teorema 1 (de la función compuesta o regla de la cadena)

Sean \(f:A\rightarrow\mathbb{R}\), \(f:B\rightarrow\mathbb{R}\) funciones reales de variable real verificando que \(f(A)\subset B\) y sea \(h=g\circ f\). Sea también \(a\in A\) y supongamos que \(f\) es derivable en \(a\) y que \(g\) es derivable en \(f(a)\). Entonces \(h\) es derivable en \(a\) y se verifica que

\[h'(a)=g'(f(a))f'(a)\]

Sea \(\phi:B\rightarrow\mathbb{R}\) la función definida por

\[\phi(y)=\left\{\begin{array}{ccc}
                   \displaystyle\frac{g(y)-g(f(a))}{y-f(a)} & \text{si} & y\in B-\{f(a)\} \\
                   g'(f(a)) & \text{si} & y=f(a)
                 \end{array}
\right.\]

La derivabilidad de \(g\) en \(f(a)\) hace que \(\phi\) sea continua en \(f(a)\). Se tiene además:

\[g(y)-g(f(a))=\phi(y)(y-f(a))\,,\forall\, y\in B\]

igualdad que, para \(y\neq f(a)\), se deduce de la definición de \(\phi\), mientras que, para \(y=f(a)\), es evidente por ser nulos sus dos miembros.

Dado \(x\in A\) tenemos, tomando \(y=f(x)\),

\[h(x)-h(a)=\phi(f(x))(f(x)-f(a))\]

de donde, si además es \(x\neq a\),

\[\frac{h(x)-h(a)}{x-a}=\phi(f(x))\frac{f(x)-f(a)}{x-a}\]

Por ser \(f\) continua en \(a\) y \(\phi\) continua en \(f(a)\) tenemos que \(\phi\circ f\) es continua en \(f(a)\) (ver proposición 3 del artículo dedicado a las propiedades de las funciones continuas), luego

\[\lim_{x\rightarrow a}\phi(f(x))=\phi(f(a))=g'(f(a))\]

Finalmente, como el límite del producto es el producto de los límites tenemos

\[\lim_{x\rightarrow a}\frac{h(x)-h(a)}{x-a}=\lim_{x\rightarrow a}\phi(f(x))\lim_{x\rightarrow a}\frac{f(x)-f(a)}{x-a}\Rightarrow h'(a)=g'(f(a))f'(a)\]tal y como queríamos demostrar.

El siguiente teorema nos permitirá estudiar la posible derivabilidad de la inversa de una función derivable e inyectiva.

Teorema 2 (de la función inversa)

Sea \(f:A\rightarrow\mathbb{R}\) una función real de variable real y \(a\) un punto de \(A\). Supongamos que \(f\) es inyectiva y que es derivable en el punto \(a\). Entonces las siguientes afirmaciones son equivalentes.

i) \(f'(a)\neq0\) y \(f^{-1}\) es continua en \(f(a)\).

ii) \(f^{-1}\) es derivable en \(f(a)\).

Además, en caso de que se cumplan i) y ii) se tiene:

\[(f^{-1})'(f(a))=\frac{1}{f'(a)}\]

i) \(\Rightarrow\) ii) Sea \(\{y_n\}\) una sucesión de puntos de \(f(A)-\{b\}\) con \(\{y_n\}\rightarrow f(a)\) y consideremos la sucesión \(x_n=f^{-1}(y_n)\,,\forall\,n\in\mathbb{N}\). Por ser \(f^{-1}\) continua en \(f(a)\) tenemos \(\{x_n\}\rightarrow f^{-1}(f(a))=a\), luego, por ser \(f\) derivable en \(a\):

\[\left\{\frac{f(x_n)-f(a)}{x_n-a}\right\}=\left\{\frac{y_n-f(a)}{f^{-1}(y_n)-f^{-1}(f(a))}\right\}\rightarrow f'(a)\]

Finalmente, siendo \(f'(a)\neq0\) obtenemos

\[\left\{\frac{f^{-1}(y_n)-f^{-1}(f(a))}{y_n-b}\right\}\rightarrow\frac{1}{f'(a)}\]

lo que demuestra que \(f^{-1}\) es derivable en \(f(a)\) con derivada \(\frac{1}{f'(a)}\).

ii) \(\Rightarrow\) i) Desde luego, si \(f^{-1}\) es derivable en \(f(a)\) será continua en \(f(a)\). Además, aplicando el teorema anterior con \(B=f(A)\) y \(g=f^{-1}\) tenemos: \(1=(f^{-1}\circ f)'(a)=(f^{-1})'(f(a))f'(a)\), lo que demuestra que \(f'(a)\neq0\) y nos da nuevamente la igualdad \((f^{-1})'(f(a))=\frac{1}{f'(a)}\).

Finalmente, vamos a probar la derivabilidad de las funciones exponencial y logaritmo neperiano y la de las funciones relacionadas con ellas.

Teorema 3

i) La función exponencial es derivable en todo \(\mathbb{R}\) y su función derivada es la propia función exponencial.

ii) Si \(f:A\rightarrow\mathbb{R}\) es derivable en un punto \(a\in A\), entonces la función \(g:A\rightarrow\mathbb{R}\) definida por

\[g(x)=\text{e}^{f(x)}\,,\forall\,x\in A\]

es derivable en \(a\) con \(g'(a)=f'(a)\text{e}^{f(a)}\). En particular, si \(\alpha\) es un número real positivo y tomamos \(A=\mathbb{R}\), \(f(x)=x\ln\alpha\,,\forall\,x\in\mathbb{R}^+\), obtenemos que la función exponencial de base \(\alpha\) es derivable en todo \(\mathbb{R}\) siendo su función derivada el producto del número real \(\ln\alpha\) por la propia función exponencial de base \(\alpha\).

iii) La función logaritmo neperiano es derivable en \(\mathbb{R}^+\) con

\[\ln'(x)=\frac{1}{x}\,,\forall\,x\in\mathbb{R}^+\]

iv) Si \(f:A\rightarrow\mathbb{R}^+\) es derivable en un punto \(a\in A\), la función \(g:A\rightarrow\mathbb{R}\) definida por

\[g(x)=\ln f(x)\,,\forall\,x\in A\]

es derivable en \(a\) con \(g'(a)=\frac{f'(a)}{f(a)}\) (derivada logarítmica de \(f\) en el punto \(a\)).

v) Si  \(f:A\rightarrow\mathbb{R}^+\) y \(g:A\rightarrow\mathbb{R}\) son derivables en un punto \(a\in A\), la función \(h:A\rightarrow\mathbb{R}^+\) definida por

\[h(x)=f(x)^{g(x)}\,,\forall\,x\in A\]

es derivable en \(a\) con

\[h'(a)=h(a)\left(g'(x)\ln f(a)+g(a)\frac{f'(a)}{f(a)}\right)\]

En particular, tomando \(A=\mathbb{R}^+\), \(f(x)=x\,,\forall\,x\in\mathbb{R}^+\) y \(g(x)=b\,,\forall\,x\in\mathbb{R}^+\) donde \(b\) es un número real fijo, se obtiene que la función potencia de exponente \(b\) es derivable en \(\mathbb{R}^+\) y su derivada es el producto del número real \(b\) por la función potencia de exponente \(b-1\).

i) Sea \(\{t_n\}\) una sucesión de números reales no nulos, convergente a cero. Y sean \(y_n=\frac{1}{t_n}\), \(x_n=\text{e}^{t_n}\), \(\forall\,n\in\mathbb{N}\). Claramente \(\{x_n\}\rightarrow1\) y \(\{x_n^{y_n}\}\rightarrow\text{e}\), luego tenemos \(\{y_n(x_n-1)\}\rightarrow1\) (ver el artículo dedicado a ciertos límites funcionales de interés), esto es que \(\{\frac{1}{t_n}(\text{e}^{t_n-1})\}\rightarrow1\).

Sea ahora \(a\in\mathbb{R}\) arbitrario y \(\{a_n\}\) una sucesión de números reales distintos de \(a\) tal que \(\{a_n\}\rightarrow a\). Podemos entonces aplicar lo anteriormente probado a la sucesión \(\{a_n-a\}\), sucesión de números reales no nulos que converge a cero, y obtener:

\[\left\{\frac{\text{e}^{a_n}-\text{e}^a}{a_n-a}\right\}=\left\{\text{e}^a\frac{\text{e}^{a_n-a}-1}{a_n-a}\right\}\rightarrow \text{e}^a\]

Hemos probado así que

\[f'(a)=\lim_{x\rightarrow a}\frac{\text{e}^x-\text{e}^a}{x-a}=\text{e}^a\]

y esto, cualquiera que sea el número real \(a\).

ii) Basta aplicar i) y la regla de la cadena.

iii) La función logaritmo neperiano es continua en \(\mathbb{R}^+\) y, por i), la función exponencial es derivable en \(\mathbb{R}\) con derivada distinto de cero en todo punto. Por el teorema de la función inversa tenemos, para todo número real \(a\):

\[\ln'(\text{e}^a)=\frac{1}{\text{e}^a}\]

y dado \(x\in\mathbb{R}^+\), podemos tomar \(a=\ln x\) para obtener

\[\ln'(x)=\frac{1}{x}\]

iv) Basta aplicar iii) y la regla de la cadena.

v) Sea \(\phi:A\rightarrow\mathbb{R}\) definida por

\[\phi(x)=\ln h(x)=g(x)\ln f(x)\,,\forall\,x\in A\]

Usando iv) y la regla de derivación de un producto, \(\phi\) es derivable en \(a\) con

\[\phi'(a)=g'(a)\ln f(a)+g(a)\frac{f'(a)}{f(a)}\]

Como quiera que

\[h(x)=\text{e}^{\phi(x)}\,,\forall\,x\in A\]

usando ii) obtenemos que \(h\) es derivable en \(a\) con

\[h'(a)=\text{e}^{\phi(a)}\phi'(a)=h(a)\left(g'(x)\ln f(a)+g(a)\frac{f'(a)}{f(a)}\right)\]

Ejercicios

1. Sea \(f:A\rightarrow\mathbb{R}\), \(a\in A\) y supongamos que \(f\) es derivable en \(a\) con \(f(a)\neq0\). Probar que las funciones \(|f|\,,f^+\,,f^-\,:A\rightarrow\mathbb{R}\) dadas por:

\[|f|(x)=|f(x)|\,,\ f^+(x)=\max\{f(x),0\}\,,\ f^-(x)=\max\{-f(x),0\}\,,\forall x\in A\]

son derivables en \(a\). ¿Es cierta la misma afirmación sin suponer \(f(a)\neq0\)?

La función \(|f|\) es la composición de la función \(f\) con la función valor absoluto: \(|f|=f\circ |\cdot|\). Como \(f\) es derivable en \(a\) y la función valor absoluto es derivable en \(f(a)\neq0\), la regla de la cadena nos asegura que \(|f|\) es derivable en \(a\). Si \(f(a)=0\) la afirmación no es cierta pues la función valor absoluto no es derivable en cero. Sea por ejemplo la función

\[f(x)=x^2-1\Rightarrow|f(x)|=\left\{\begin{array}{ccc}
                  x^2-1 & \text{si} & x\in(-\infty,-1]\cup[1,+\infty) \\
                  -x^2+1 & \text{si} & x\in(-1,1)
                \end{array}
  \right.\]

En el punto \(a=1\) se tiene

\[\frac{f(x)-f(1)}{x-1}=\left\{\begin{array}{ccc}
                  x+1 & \text{si} & x\in(-\infty,-1]\cup[1,+\infty) \\
                  -x-1 & \text{si} & x\in(-1,1)
                \end{array}
  \right.\]

De esta manera

\[\lim_{x\rightarrow1^+}\frac{f(x)-f(1)}{x-1}=2\quad;\quad\lim_{x\rightarrow1^-}\frac{f(x)-f(1)}{x-1}=-2\]

y por tanto \(|f|\) no es derivable en \(a=1\).

Por otro lado, se tiene que

\[f^+(x)=\max\{f(x),0\}=\frac{f(x)+|f(x)|}{2}\ ;\ f^-(x)=\max\{-f(x),0\}=\frac{-f(x)+|f(x)|}{2}\]

Entonces, por lo demostrado anteriormente, tanto \(f^+\) como \(f^-\) son derivables en \(a\in A\) con \(f(a)\neq0\). Del mismo modo que antes, esta afirmación no tiene por qué ser cierta si \(f(a)=0\).

2. Estudiar la continuidad y derivabilidad de la función \(f:A\rightarrow\mathbb{R}\) en cada uno de los siguientes casos:

a) \(A=[-1,1]\) ; \(f(x)=\sqrt{1-x^2}\,,\forall\,x\in A\).

b) \(A=\mathbb{R}\) ; \(f(x)=\sqrt[3]{|x|}\,,\forall\,x\in\mathbb{R}\).

c) \(A=\mathbb{R}\) ; \(f(x)=\frac{2x}{1+|x|}\,,\forall\,x\in\mathbb{R}\).

d) \(A=\mathbb{R}_0^+\) ; \(f(x)=x^x\,,\forall\,x\in\mathbb{R}^+\), \(f(0)=1\).

e) \(A=[0,1]\) ; \(f(x)=\max\{x,1-x\}\,,\forall\,x\in A\).

a) Sean \(g:\mathbb{R}\rightarrow\mathbb{R}\) y \(h:[0,+\infty)\rightarrow\mathbb{R}\) definidas respectivamente por \(g(x)=1-x^2\) y \(h(x)=\sqrt{x}\). \(g\) es continua y derivable en todo \(\mathbb{R}\), y \(h\) es continua en \([0,+\infty)\) y derivable en \((0,+\infty)\).

\(h\) no es derivable en cero porque

\[\lim_{x\rightarrow0}\frac{h(x)-h(0)}{x-0}=\lim_{x\rightarrow0^+}\frac{\sqrt{x}}{x}=\lim_{x\rightarrow0}\frac{1}{\sqrt{x}}=+\infty\]

Las derivadas de las funciones \(g(x)=1-x^2\) y \(h(x)=\sqrt{x}=x^{1/2}\) son, respectivamente, \(g'(x)=-2x\) y \(h'(x)=\frac{1}{2}x^{-1/2}\), donde se ha utilizado que la derivada de la función constante es igual a cero, que la derivada de la suma es la suma de las derivadas y el apartado v) del teorema 3, según el cual la derivada de la función potencia de exponente \(b\in\mathbb{R}^+\) es el producto del número real \(b\) por la función potencia de exponente \(b-1\).

Por otro lado tenemos que \((h\circ g)(x)=h(g(x))=h(1-x^2)=\sqrt{1-x^2}\), con lo que \(f=h\circ g\). Por la regla de la cadena \(f\) es derivable en \((-1,1)\), ya que si \(a\in(-1,1)\), entonces \(1-a^2\in(0,1)\) y \(f(a)=h(g(a))=h(1-a^2)\). Además, \(f\) no es derivable ni en \(x=-1\), ni en \(x=-1\) porque, tal y como hemos comprobado, no lo es \(h\) en cero y \(f(-1)=f(1)=(h\circ g)(1)=h(g(1))=h(0)\). Dado \(x\in(-1,1)\), la regla de la cadena nos proporciona la derivada de la función \(f\) en \(x\):

\[f'(x)=(h\circ g)'(x)=h'(g(x))g'(x)=\frac{1}{2}(1-x^2)^{-1/2}(-2x)=\frac{-x}{\sqrt{1-x^2}}\]

 

b) La función \(f(x)=\sqrt[3]{|x|}=|x|^{1/3}\) la podemos escribir así:

\[f(x)=\left\{\begin{array}{ccc}
                    x^{1/3} & \text{si} & x\geqslant0 \\
                    (-x)^{1/3} & \text{si} & x<0
                  \end{array}
    \right.\]

Si \(a\in\mathbb{R}^+\), \(f\) es derivable en \(a\) por el apartado 5 del teorema 3, con \(f'(a)=\frac{1}{3}a^{-2/3}\). Por la misma razón, si \(a\in\mathbb{R}^-\), \(f\) también es derivable en \(a\) con derivada \(f'(a)=-\frac{1}{3}a^{-2/3}\).

Si \(a=0\), \(f\) no es derivable en \(a\) pues tomando \(x>0\)

\[\frac{f(x)-f(0)}{x-0}=\frac{\sqrt[3]{x}}{x}=\frac{1}{\sqrt[3]{x^2}}\]

que no tiene límite finito cuando \(x\rightarrow0\).

 

c) La función la podemos escribir del siguiente modo:

\[f(x)=\left\{\begin{array}{ccc}
                    \displaystyle\frac{2x}{1+x} & \text{si} & x\geqslant0 \\
                    \displaystyle\frac{2x}{1-x} & \text{si} & x<0
                  \end{array}
    \right.\]

Esta función es claramente continua y derivable en \(\mathbb{R}-\{0\}\) con derivada

\[f'(x)=\left\{\begin{array}{ccc}
                    \displaystyle\frac{2}{(1+x)^2} & \text{si} & x>0 \\
                    \displaystyle\frac{2}{(1-x)^2} & \text{si} & x<0
                  \end{array}
    \right.\]

Veamos qué ocurre en cero.

Tomando \(x>0\):

\[\lim_{x\rightarrow0}\frac{f(x)-f(0)}{x-0}=\lim_{x\rightarrow0}\frac{\frac{2x}{1+x}}{x}=\lim_{x\rightarrow0}\frac{2}{1+x}=2\]

Tomando \(x<0\):

\[\lim_{x\rightarrow0}\frac{f(x)-f(0)}{x-0}=\lim_{x\rightarrow0}\frac{\frac{2x}{1-x}}{x}=\lim_{x\rightarrow0}\frac{2}{1-x}=2\]

Las derivadas laterales existen y son iguales. Por tanto, \(f\) es derivable en cero con \(f'(0)=2\).

 

d) Si \(a\in\mathbb{R}^+\) el apartado v) del teorema iii) nos asegura que \(f\) es derivable en \(a\) con derivada

\[f'(a)=a^a\left(\ln a+1\right)\]

Estudiemos ahora la derivabilidad de \(f\) en cero. Sea \(\phi\) la función definida de la siguiente manera:

\[\phi(x)=\left\{\begin{array}{ccc}
                    x\ln x & \text{si} & x>0 \\
                    0 & \text{si} & x=0
                  \end{array}
    \right.\]

Puesto que

\[\lim_{x\rightarrow0}\frac{\phi(x)-\phi(0)}{x-0}=\lim_{x\rightarrow0}\frac{x\ln x}{x}=\lim_{x\rightarrow0}\ln x=-\infty\]

la función \(\phi\) no es derivable en cero.

Supongamos que \(f\) fuera derivable en cero. Como \(f(x)=\text{e}^{\phi(x)}\), haciendo uso de la regla de la cadena, tendríamos que \(f'(0)=e^{\phi(0)}\phi'(0)=\phi'(0)\), lo cual es contradictorio pues \(\phi\) no es derivable en cero. Por tanto, acabamos de demostrar que \(f\) no es derivable en cero.

 

e) Observemos que \(x=1-x\Leftrightarrow x=\frac{1}{2}\), \(x<1-x\Leftrightarrow x<\frac{1}{2}\) y \(x>1-x\Leftrightarrow x>\frac{1}{2}\). Por tanto podemos escribir la función \(f(x)=\max\{x,1-x\}\) del siguiente modo:

\[f(x)=\left\{\begin{array}{ccc}
                    1-x & \text{si} & 0\leqslant x\leqslant\frac{1}{2} \\
                    x & \text{si} & \frac{1}{2}<x\leqslant1
                  \end{array}
    \right.\]

Claramente, si \(x\neq0\), \(x\neq1\) y \(x\neq\frac{1}{2}\), \(f\) es derivable con derivada

\[f'(x)=\left\{\begin{array}{ccc}
                    -1 & \text{si} & 0<x<\frac{1}{2} \\
                    1 & \text{si} & \frac{1}{2}<x<1
                  \end{array}
    \right.\]

Si \(x=0\) existe la derivada lateral por la derecha, cuyo valor es \(f'_+(0)=-1\). Análogamente, si \(x=1\) existe la derivada lateral por la izquierda y \(f'_-(1)=1\) (estos resultados se pueden obtener también con facilidad aplicando la definición de derivada lateral de una función en un punto). Finalmente, \(f\) no es derivable en \(x=\frac{1}{2}\) pues las derivadas laterales por la izquierda y por la derecha de \(\frac{1}{2}\) no coinciden: \(f'_-\left(\frac{1}{2}\right)=-1\neq1=f'_+\left(\frac{1}{2}\right)\).

3. Estudiar la continuidad y derivabilidad de la función \(f:\mathbb{R}\rightarrow\mathbb{R}\) definida por:

\[f(x)=\left\{\begin{array}{ccc}
                  x^2 & \text{si} & x\in\mathbb{Q} \\
                  x^3 & \text{si} & x\in\mathbb{R}-\mathbb{Q}
                \end{array}
  \right.\]

Sea \(a\in\mathbb{R}\) y \(\{x_n\}\) una sucesión de racionales convergente al punto \(a\). Entonces tenemos que \(\{f(x_n)\}=\{x_n^2\}\rightarrow a^2\). Sea ahora una sucesión \(\{y_n\}\) de irracionales que converja también al punto \(a\). En este caso \(\{f(y_n)\}=\{y_n^3\}\rightarrow a^3\). Para que \(f\) sea continua en \(a\) debe ser \(a^2=a^3\), es decir, \(a=0\) o \(a=1\). Si \(a=0\Rightarrow\{f(x_n)\}\rightarrow0=f(0)\), sea quien sea la sucesión \(\{x_n\}\). Si \(a=1\Rightarrow\{f(x_n)\}\rightarrow1=f(1)\). Entonces \(f\) es continua en \(0\) y en \(1\). En los demás puntos no es continua y, por tanto, tampoco es derivable.

Estudiemos la derivabilidad en el punto \(a=0\). En este caso

\[\frac{f(x)-f(0)}{x-0}=\left\{\begin{array}{ccc}
                                   x & \text{si} & x\in\mathbb{Q} \\
                                   x^2 & \text{si} & x\in\mathbb{R}-\mathbb{Q}
                                 \end{array}
  \right.\]

Entonces es claro que \(\displaystyle\lim_{x\rightarrow0}\frac{f(x)-f(0)}{x-0}=0\), con lo que \(f\) es derivable en \(0\) y \(f'(0)=0\).

Veamos ahora qué ocurre en \(a=1\).

\[\frac{f(x)-f(1)}{x-1}=\left\{\begin{array}{ccc}
                                   x+1 & \text{si} & x\in\mathbb{Q} \\
                                   x^2+x+1 & \text{si} & x\in\mathbb{R}-\mathbb{Q}
                                 \end{array}
  \right.\]

En este caso \(\displaystyle\frac{f(x)-f(1)}{x-1}\) no tiene límite en \(1\), pues si \(x\rightarrow1\) por racionales \(\displaystyle\frac{f(x)-f(1)}{x-1}\rightarrow2\) y si \(x\rightarrow1\) por irracionales \(\displaystyle\frac{f(x)-f(1)}{x-1}\rightarrow3\). Por tanto, \(f\) no es derivable en \(a=1\).

4. Probar que la función \(f:\mathbb{R}\rightarrow\mathbb{R}\) definida por:

\[f(x)=\left\{\begin{array}{ccc}
                  x & \text{si} & x\in\mathbb{R}_0^- \\
                  \ln(1+x) & \text{si} & x\in\mathbb{R}^+
                \end{array}
  \right.\]

es derivable en \(\mathbb{R}\) y encontrar su función derivada.

La función es claramente continua y derivable en \(\mathbb{R}-\{0\}\), con

\[f'(x)=\left\{\begin{array}{ccc}
                                   1 & \text{si} & x<0 \\
                                   \frac{1}{1+x} & \text{si} & x>0
                                 \end{array}
  \right.\]

Como \(\displaystyle\lim_{x\rightarrow0^+}f(x)=\lim_{x\rightarrow0^-}f(x)=0\), entonces \(\displaystyle\lim_{x\rightarrow0}f(x)=0=f(0)\), \(f\) es continua en \(0\).

Además:

\[\lim_{x\rightarrow0^-}\frac{f(x)-f(0)}{x-0}=1\ ;\ \lim_{x\rightarrow0^+}\frac{f(x)-f(0)}{x-0}=\lim_{x\rightarrow0^+}\frac{\ln(1+x)}{x}=1\]

Para demostrar que este último límite es igual a \(1\), demostraremos que \(\displaystyle\lim_{x\rightarrow0^+}(1+x)^{1/x}=\text{e}\). Sea \(y=\frac{1}{x}\). Entonces, \(x\rightarrow0^+\Rightarrow y\rightarrow+\infty\) y tenemos:

\[\lim_{x\rightarrow0^+}(1+x)^{1/x}=\lim_{y\rightarrow+\infty}\left(1+\frac{1}{y}\right)^y=\text{e}\]

Y de aquí, por la continuidad de la función logaritmo neperiano, se deduce que

\[\lim_{x\rightarrow0^+}\ln(1+x)^{1/x}=\lim_{x\rightarrow0^+}\frac{1}{x}\ln(1+x)=\lim_{x\rightarrow0^+}\frac{\ln(1+x)}{x}=\ln\text{e}=1\]

Por tanto, hemos demostrado que

\[\lim_{x\rightarrow0^-}\frac{f(x)-f(0)}{x-0}=\lim_{x\rightarrow0^+}\frac{f(x)-f(0)}{x-0}=1\]

Así, \(f\) es derivable en cero con \(f'(0)=1\).

5. Estudiar la continuidad y derivabilidad de la función \(f:\mathbb{R}\rightarrow\mathbb{R}\) definida por:

\[f(x)=\left\{\begin{array}{ccc}
                  x^p\ln|x| & \text{si} & x\in\mathbb{R}-\{0\} \\
                  0 & \text{si} & x=0
                \end{array}
  \right.\]

donde \(p\) es un número entero.

La función es continua y derivable en \(\mathbb{R}-\{0\}\) y tenemos que

\[f'(x)=\left\{\begin{array}{ccc}
                                   x^{p-1}(p+\ln x) & \text{si} & x>0 \\
                                   x^{p-1}(p-\ln(-x)) & \text{si} & x<0
                                 \end{array}
  \right.\]

Como \(|x^p\ln|x||\leqslant|x^{p+1}|\), entonces \(\forall\,\varepsilon>0\,,\exists\,\delta>0\,:\,x\in\mathbb{R}\,,\,0<|x|<\delta\Rightarrow|f(x)|<\varepsilon\). Basta tomar \(\delta=\sqrt[p+1]{\varepsilon}\). Entonces

\[\lim_{x\rightarrow0}f(x)=\lim_{x\rightarrow0}\left(x^p\ln|x|\right)=0=f(0)\]

y, por tanto, \(f\) es continua en cero.

Usando lo demostrado anteriormente tenemos también

\[\lim_{x\rightarrow0}\frac{f(x)-f(0)}{x-0}=\lim_{x\rightarrow0}\frac{x^p\ln|x|}{x}=\lim_{x\rightarrow0}\left(x^{p-1}\ln|x|\right)=0\]

lo que demuestra que \(f\) es derivable en \(0\) con \(f'(0)=0\).

6. Sea \(f:\mathbb{R}\rightarrow\mathbb{R}\) definida por \(f(x)=x+\text{e}^x\,,\forall\,x\in\mathbb{R}\). Probar que \(f\) es biyectiva y que \(f^{-1}\) es derivable en todo \(\mathbb{R}\). Calcular \((f^{-1})'(1)\) y \((f^{-1})'(1+\text{e})\).

La función \(f\) es continua y derivable en todo \(\mathbb{R}\) por ser suma de continuas y derivables. Por otro lado, \(f(x)\rightarrow-\infty\) cuando \(x\rightarrow-\infty\) y \(f(x)\rightarrow+\infty\) cuando \(x\rightarrow+\infty\), lo que demuestra que \(f(\mathbb{R})=\mathbb{R}\) y \(f\) es sobreyectiva. Además, \(f\) es estrictamente creciente pues si \(x<y\), entonces \(x+\text{e}^x<y+\text{e}^y\) (la función exponencial es estrictamente creciente). Así, \(f\) es inyectiva y, por tanto, \(f^{-1}\) es continua (ver el artículo dedicado a las funciones continuas e inyectivas).

La derivada de la función \(f\) es \(f'(x)=1+\text{e}^x\neq0\,,\forall\,x\in\mathbb{R}\). Por el teorema de la función inversa \(f^{-1}\) es derivable en todo \(\mathbb{R}\) y se tiene que \((f^{-1})'(f(a))=\frac{1}{f'(a)}\). Así:

\(f(a)=1\Leftrightarrow a+\text{e}^a=1\Leftrightarrow a=0\) y entonces \((f^{-1})'(1)=\frac{1}{f'(0)}=\frac{1}{2}\).

\(f(a)=1+\text{e}\Leftrightarrow a+\text{e}^a\Leftrightarrow1+\text{e}\Leftrightarrow a=1\) y entonces \((f^{-1})'(1+\text{e})=\frac{1}{f'(1)}=\frac{1}{1+\text{e}}\).

Referencia bibliográfica. Aparicio C., Payá R. (1985) Análisis Matemático I (Secretariado de Publicaciones. Universidad de Granada).


Puedes descargar el artículo completo en pdf haciendo clic aquí.


volver arriba

lasmatematicas.eu

Aplicaciones

Sígueme

webs de matemáticas