Últimas noticias
Home » Matematicas ESO » 4º ESO - Exámenes de matemáticas » Fracciones. Potencias. Radicales. Ecuaciones (1)

Fracciones. Potencias. Radicales. Ecuaciones (1)

  • Ejercicio 1 (2 puntos)

Resolver las siguientes operaciones con fracciones, simplificando en todo momento los pasos intermedios y el resultado.

\(\displaystyle\frac{\displaystyle\left(\frac{2}{5}-\frac{1}{3}\right):\left(1-\frac{1}{3}\cdot\frac{6}{5}\right)}{\displaystyle1-\left(\frac{2}{3}\cdot\frac{1}{3}-1\right)}+1\)

\(\displaystyle\frac{\displaystyle3+\frac{3}{2+1/2}}{\displaystyle\frac{1}{15}+\left(\frac{3}{2}-\frac{1}{3}\cdot\frac{5}{2}\right)\cdot\frac{1}{5}}\)

La solución aquí

La solución aquí

\(\displaystyle\frac{\displaystyle\left(\frac{2}{5}-\frac{1}{3}\right):\left(1-\frac{1}{3}\cdot\frac{6}{5}\right)}{\displaystyle1-\left(\frac{2}{3}\cdot\frac{1}{3}-1\right)}+1= \frac{\displaystyle\left(\frac{6}{15}-\frac{5}{15}\right):\left(1-\frac{6}{15}\right)}{\displaystyle1-\left(\frac{2}{9}-1\right)}+1=\)

\(\displaystyle=\frac{\displaystyle\left(\frac{1}{15}\right):\left(\frac{9}{15}\right)}{\displaystyle1-\left(-\frac{7}{9}\right)}+1=\frac{\displaystyle\frac{15}{15\cdot9}}{\displaystyle1+\frac{7}{9}}+1=\frac{\displaystyle\frac{1}{9}}{\displaystyle\frac{16}{9}}+1=\frac{9}{9\cdot16}+1=\frac{1}{16}+1=\frac{17}{16}\)

\(\displaystyle\frac{\displaystyle3+\frac{3}{2+1/2}}{\displaystyle\frac{1}{15}+\left(\frac{3}{2}-\frac{1}{3}\cdot\frac{5}{2}\right)\cdot\frac{1}{5}}= \frac{\displaystyle3+\frac{3}{5/2}}{\displaystyle\frac{1}{15}+\left(\frac{3}{2}-\frac{5}{6}\right)\cdot\frac{1}{5}}= \frac{\displaystyle3+\frac{6}{5}}{\displaystyle\frac{1}{15}+\left(\frac{9}{6}-\frac{5}{6}\right)\cdot\frac{1}{5}}=\)

\(\displaystyle\frac{\displaystyle\frac{15}{5}+\frac{6}{5}}{\displaystyle\frac{1}{15}+\frac{4}{6}\cdot\frac{1}{5}}= \frac{\displaystyle\frac{21}{5}}{\displaystyle\frac{1}{15}+\frac{4}{30}}=\frac{\displaystyle\frac{21}{5}}{\displaystyle\frac{2}{30}+\frac{4}{30}}=\frac{\displaystyle\frac{21}{5}}{\displaystyle\frac{6}{30}}=\frac{21\cdot30}{5\cdot6}=\frac{21\cdot30}{30}=21\)

  • Ejercicio 2 (2 puntos)

Realiza las siguientes operaciones con potencias y simplifica el resultado todo lo posible (se puede dejar el resultado en forma de potencia).

\(\displaystyle\frac{4^2\cdot2^{-2}\cdot9^{-3}\cdot6^{3}}{12\cdot3^{-3}\cdot2\cdot3^{-3}}\)

\(\displaystyle\frac{\displaystyle\left(\frac{5}{4}\right)^{-3}\cdot\left(\frac{25}{4}\right)^3}{\displaystyle5^3\cdot\left(\frac{2}{5}\right)^{-2}\cdot\left(\frac{5}{2}\right)^{-3}\cdot\left(\frac{4}{5}\right)^2}\)

La solución aquí

La solución aquí

\(\displaystyle\frac{4^2\cdot2^{-2}\cdot9^{-3}\cdot6^{3}}{12\cdot3^{-3}\cdot2\cdot3^{-3}}=\frac{(2^2)^2\cdot2^{-2}\cdot(3^2)^{-3}\cdot(2\cdot3)^{3}}{(2^2\cdot3)\cdot3^{-3}\cdot2\cdot3^{-3}}=\frac{2^4\cdot2^{-2}\cdot3^{-6}\cdot2^{3}\cdot3^3}{2^2\cdot3\cdot3^{-3}\cdot2\cdot3^{-3}}=\)

\(\displaystyle=\frac{2^5\cdot3^{-3}}{2^3\cdot3^{-5}}=2^2\cdot3^2=4\cdot9=36\)

\(\displaystyle\frac{\displaystyle\left(\frac{5}{4}\right)^{-3}\cdot\left(\frac{25}{4}\right)^3}{\displaystyle5^3\cdot\left(\frac{2}{5}\right)^{-2}\cdot\left(\frac{5}{2}\right)^{-3}\cdot\left(\frac{4}{5}\right)^2}=\frac{\displaystyle\left(\frac{4}{5}\right)^{3}\cdot\left(\frac{25}{4}\right)^3}{\displaystyle5^3\cdot\left(\frac{5}{2}\right)^{2}\cdot\left(\frac{2}{5}\right)^{3}\cdot\left(\frac{4}{5}\right)^2}=\)

\(\displaystyle=\frac{\displaystyle\frac{2^6}{5^3}\cdot\frac{5^6}{2^6}}{\displaystyle5^3\cdot\frac{5^2}{2^2}\cdot\frac{2^3}{5^3}\cdot\frac{2^4}{5^2}}=\frac{5^3}{2^5}=\frac{125}{32}\)

  • Ejercicio 3 (1 punto)

Opera y simplifica extrayendo factores siempre que sea posible (recuerda que has de factorizar los números que no sean primos).

\(\displaystyle\sqrt{16\sqrt[5]{64}}\)

\(\displaystyle3\sqrt{2}+4\sqrt{8}-\sqrt{32}+\sqrt{50}\)

La solución aquí

La solución aquí

\(\displaystyle\sqrt{16\sqrt[5]{64}}=\sqrt{2^4\sqrt[5]{2^6}}=\sqrt{\sqrt[5]{(2^4)^5\cdot2^6}}=\sqrt[10]{2^{20}\cdot2^6}=\sqrt[10]{2^{26}}=\)

\(\displaystyle=2^2\,\sqrt[10]{2^6}=4\,\sqrt[5]{2^3}=4\,\sqrt[5]{8}\)

\(\displaystyle3\sqrt{2}+4\sqrt{8}-\sqrt{32}+\sqrt{50}=3\sqrt{2}+4\sqrt{2^3}-\sqrt{2^5}+\sqrt{2\cdot5^2}=\)

\(\displaystyle=3\sqrt{2}+4\cdot2\,\sqrt{2}-2^2\,\sqrt{2}+5\,\sqrt{2}=(3+8-4+5)\sqrt{2}=12\,\sqrt{2}\)

  • Ejercicio 4 (1 punto)

Racionalizar las siguientes expresiones y simplificar el resultado en la medida de lo posible.

\(\displaystyle \frac{6}{\sqrt[3]{3}}\)

\(\displaystyle \frac{9}{\sqrt{5}-\sqrt{2}}\)

La solución aquí

La solución aquí

\(\displaystyle \frac{6}{\sqrt[3]{3}}=\frac{6\cdot\sqrt[3]{3}}{\sqrt[3]{3}\cdot\sqrt[3]{3^2}}=\frac{6\cdot\sqrt[3]{3^2}}{\sqrt[3]{3^3}}=\frac{6\cdot\sqrt[3]{9}}{3}=2\sqrt[3]{9}\)

\(\displaystyle \frac{9}{\sqrt{5}-\sqrt{2}}=\frac{9\cdot\left(\sqrt{5}+\sqrt{2}\right)}{\left(\sqrt{5}-\sqrt{2}\right)\cdot\left(\sqrt{5}+\sqrt{2}\right)}=\)

\(\displaystyle =\frac{9\cdot\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}^2-\sqrt{2}^2}=\frac{9\cdot\left(\sqrt{5}+\sqrt{2}\right)}{5-2}=\)

\(\displaystyle =\frac{9\cdot\left(\sqrt{5}+\sqrt{2}\right)}{3}=3\cdot\left(\sqrt{5}+\sqrt{2}\right)\)

  • Ejercicio 5 (4 puntos)

Resolver las siguientes ecuaciones.

\(\displaystyle \frac{1}{3}(x+2)-\frac{1}{5}(2x-3)=4-\frac{2x}{15}\)

\(\displaystyle \frac{x+5}{3}+\frac{x-3}{2}=\frac{x+5}{5}-\frac{3x}{15}\)

\(\displaystyle \frac{x(x+1)}{5}=2x^2-4x\)

\(\displaystyle \left(\frac{3}{2}x-2\right)^2-(x-1)(x+1)=-2\)

La solución aquí

La solución aquí

\(\displaystyle \frac{1}{3}(x+2)-\frac{1}{5}(2x-3)=4-\frac{2x}{15}\Rightarrow5(x+2)-3(2x-3)=60-2x\Rightarrow\)

\(\Rightarrow 5x+10-6x+9=60-2x\Rightarrow5x-6x+2x=60-10-9\Rightarrow x=41\)

\(\displaystyle \frac{x+5}{3}+\frac{x-3}{2}=\frac{x+5}{5}-\frac{3x}{15}\Rightarrow10(x+5)+15(x-3)=6(x+5)-6x\Rightarrow\)

\(\Rightarrow10x+50+15x-45=6x+30-6x\Rightarrow\)

\(\Rightarrow10x+15x-6x+6x=30-50+45\Rightarrow\)

\(\displaystyle\Rightarrow25x=25\Rightarrow x=\frac{25}{25}\Rightarrow x=1\)

\(\displaystyle \frac{x(x+1)}{5}=2x^2-4x\)

\(\displaystyle \left(\frac{3}{2}x-2\right)^2-(x-1)(x+1)=-2\)

Sobre Pedro Castro Ortega

Profesor de Matemáticas en el IES "Fernando de Mena" de Socuéllamos (Ciudad Real, Castilla-La Mancha).

Comentar

Su dirección de correo electrónico no será publicada.Los campos necesarios están marcados *

*

x

Check Also

Logaritmos. ¿Qué son? Definición, propiedades y ejercicios

Consideremos la ecuación \(2^x=75\). Como quiera que \(2^6=64\) y \(2^7=128\), es fácil darse cuenta de ...

Matemática algorítmica y matemática dialéctica

Para exponer más fácilmente la diferencia de concepción y perspectiva que separa la matemática dialéctica ...

Resolución de triángulos

Partimos del conocimiento de las razones trigonoméricas de un ángulo agudo sobre un triángulo rectángulo. ...

Ecuaciones logarítmicas

En una ecuación logarítmica la incógnita está afectada por un logaritmo. Al igual que ocurría ...

A %d blogueros les gusta esto: