Últimas noticias
Home » Divulgación de las Matemáticas » Un número perfecto. 28 ideas asombrosas de la Historia de las Matemáticas

Un número perfecto. 28 ideas asombrosas de la Historia de las Matemáticas

Un número perfecto. 28 ideas asombrosas de la Historia de las Matemáticas”. Este es el título de un libro escrito por Santi García Cremades. Lo descubrí en Twitter, precisamente a través de la cuenta del autor: @SantiGarciaCC. Ya lo tengo en mis manos, casi leído (algunos capítulos releídos) y me está encantando. Me voy a tomar el permiso, la licencia, de transcribir literalmente parte de la introducción del autor.

[…] Ante tus ojos tienes 28 conceptos, un número perfecto de ideas que harán un recorrido por la historia de la humanidad. Ahí es nada. 28 es un número perfecto por definición, sus divisores propios suman exactamente el propio número 28. Eso lo hace perfecto, y aquí hay ideas perfectas, sin fisuras, sin factor de envejecimiento. Por si no te has dado cuenta, ni tú ni yo somos perfectos. Nos arrugamos, nos volvemos miedosos, y siempre nos falta tiempo. No somos perfectos. Sin embargo, aunque este libro es imperfecto en su forma, tiene un fondo perfecto, porque las Matemáticas lo avalan. Con el no podrás viajar en el tiempo como Marty McFly, pero podrás introducir en tus neuronas algo atemporal, algo eterno. Y eso nada más puede conseguirlo. Lo que le dijiste el otro día a aquel señor ya está dicho, no puedes viajar al pasado y repararlo, porque, lo siento mucho, pero la Física tiene sus limitaciones.

No me gusta dar advertencias, pero la experiencia me ha enseñado que en Matemáticas hay que darlas. Los llamaremos axiomas, para no dar miedo.

A saber:

Este libro es de Matemáticas, el contenido volcado aquí es totalmente cierto.

No es un libro solo para matematic@s. Es para todos los públicos, así que, si eres humano o extraterrestre, deberías entender el mensaje. Si no, el fallo es mío.

No importa el orden. El orden no altera el producto, ni la suma, ni este libro. Puedes empezar y terminar por donde quieras […]

Por cierto, puedes encontrar más sobre el autor en su Web: raizde2.com

Si quieres conocer las 28 ideas asombrosas de la Historia de las Matemáticas que contiene este libro, puedes hacer clic aquí debajo

28 ideas asombrosas de la Historia de las Matemáticas

28 ideas asombrosas de la Historia de las Matemáticas

BABILÓNICOS, CHINOS Y GRIEGOS

1. La agricultura y los números naturales.

2. El arte y la geometría.

3. Los números primos y los bichos.

4. Los ríos y el número pi.

5. Hasta mi ombligo usa el número phi.

6. Raíz de 2 y Pitágoras “el cachondo”.

7. La Alhambra y las teseladas.

EL RENACIMIENTO DE LAS MATEMÁTICAS

8. Asumir el cero no es fácil.

9. Crecer más que nadie y la exponencial.

10. Gauss vio números imaginarios.

11. El infinito en la palma de la mano.

12. La probabilidad de los dados.

13. Todos somos normales.

14. Fermat, “el fantasma”.

TIEMPOS MODERNOS

15. El caos y la tormenta.

16. Fractales y las películas de Pixar.

17. Hasta el infinito y mucho más allá.

18.  7 problemas x 7 millones.

19. Hacer cirugía con la Estadística.

20. Google, Facebook y grafos.

21. El metro y la Topología.

LAS MATEMÁTICAS ESTÁN EN TODAS PARTES

22. Seguridad bancaria y los primos grandes.

23. La ley de Benford y el número más pesado.

24. Los puentes no se caen.

25. Dilema del prisionero y los cuernos.

26. Encontrar tu pareja ideal.

27. La lotería no tiene memoria.

28. 28, un número perfecto.

Yo poco más puedo decir. Solo que muchísimas gracias Santi. Estoy seguro de que lo has dado todo escribiendo estas 28 ideas. Este libro es una maravilla, una joya para disfrutar en lo personal y para compartir y aprender, cosa que, en mi caso, yo haré con todos mis alumnos.

Aquí puedes encontrar la reseña de contraportada y una opción de compra 😉.

Sobre Pedro Castro Ortega

Profesor de Matemáticas en el IES “Fernando de Mena” de Socuéllamos (Ciudad Real, Castilla-La Mancha).

Comentar

Su dirección de correo electrónico no será publicada.Los campos necesarios están marcados *

*

x

Check Also

Ecuaciones exponenciales

Digamos que una ecuación exponencial es aquella en la que la incógnita se encuentra en ...

Operaciones con raíces. Radicales (2)

Instrucciones: Para practicar con estos ejercicios te recomiendo que los copies en tu cuaderno o ...

¿Por qué un número no nulo elevado a cero es igual a uno?

El conjunto de los números reales, con las operaciones suma y producto tiene estructura de ...

Maxima, un sistema de álgebra computacional

Maxima es un sistema para la manipulación de expresiones simbólicas y numéricas, incluyendo diferenciación, integración, ...

A %d blogueros les gusta esto: