Últimas noticias
Home » Divulgación de las Matemáticas » Circunferencias tangentes

Circunferencias tangentes

Tenemos dos circunferencias con radios \(a\) y \(b\), respectivamente, que son tangentes a la misma línea recta, así como una a la otra (véase la figura de más abajo). Los puntos donde las circunferencias tocan a la línea recta son \(D\) y \(E\). ¿Cuál es la longitud del segmento \(\overline{DE}\)?

La solución aquí

La solución aquí

El único triángulo que se ve en la figura es claramente rectángulo. Su hipotenusa es igual, también claramente, a la suma de los radios de las circunferencias. Aplicando el teorema de Pitágoras:

\[(a+b)^2=\overline{DE}^2+(b-a)^2\Rightarrow a^2+2ab+b^2=\overline{DE}^2+b^2-2ab+a^2\]

Y de aquí:

\[\overline{DE}^2=4ab\]

Por tanto:

\[\overline{DE}=\sqrt{4ab}\Rightarrow\overline{DE}=2\sqrt{ab}\]

Sobre Pedro Castro Ortega

Profesor de Matemáticas en el IES "Fernando de Mena" de Socuéllamos (Ciudad Real, Castilla-La Mancha).

Comentar

Su dirección de correo electrónico no será publicada.Los campos necesarios están marcados *

*

x

Check Also

Logaritmos. ¿Qué son? Definición, propiedades y ejercicios

Consideremos la ecuación \(2^x=75\). Como quiera que \(2^6=64\) y \(2^7=128\), es fácil darse cuenta de ...

Matemática algorítmica y matemática dialéctica

Para exponer más fácilmente la diferencia de concepción y perspectiva que separa la matemática dialéctica ...

Resolución de triángulos

Partimos del conocimiento de las razones trigonoméricas de un ángulo agudo sobre un triángulo rectángulo. ...

Fracciones. Potencias. Radicales. Ecuaciones (1)

A %d blogueros les gusta esto: