Home » Geometría » Expresiones, identidades y ecuaciones trigonométricas

Expresiones, identidades y ecuaciones trigonométricas

En Matemáticas I (1º de Bachillerato) se trabaja mucho la demostración de identidades trigonométricas, la simplificación de expresiones en las que aparecen razones trigonométricas, la resolución de ecuaciones trigonométricas y de sistemas de ecuaciones trigonométricas. Veamos unos ejemplos.

Identidades trigonométricas

Demostrar las siguientes identidades trigonométricas:

\[\frac{\cos x+\text{sen}\,x}{\cos x-\text{sen}\,x}-\frac{\cos x-\text{sen}\,x}{\cos x+\text{sen}\,x}=2\text{tg}\,2x\]

La solución aquí

La solución aquí

\[\frac{\cos x+\text{sen}\,x}{\cos x-\text{sen}\,x}-\frac{\cos x-\text{sen}\,x}{\cos x+\text{sen}\,x}=\]

\[=\frac{\left( \cos x+\text{sen}\,x \right)\left( \cos x+\text{sen}\,x \right)}{\left( \cos x-\text{sen}\,x \right)\left( \cos x+\text{sen}\,x \right)}-\frac{\left( \cos x-\text{sen}\,x \right)\left( \cos x-\text{sen}\,x \right)}{\left( \cos x-\text{sen}\,x \right)\left( \cos x+\text{sen}\,x \right)}=\]

\[=\frac{{{\cos }^{2}}x+2\cos x\,\text{sen}\,x+\text{se}{{\text{n}}^{2}}x}{\left( \cos x-\text{sen}\,x \right)\left( \cos x+\text{sen}\,x \right)}-\frac{{{\cos }^{2}}x-2\cos x\,\text{sen}\,x+\text{se}{{\text{n}}^{2}}x}{\left( \cos x-\text{sen}\,x \right)\left( \cos x+\text{sen}\,x \right)}=\]

\[=\frac{2\cos x\,\text{sen}\,x+2\cos x\,\text{sen}\,x}{\left( \cos x-\text{sen}\,x \right)\left( \cos x+\text{sen}\,x \right)}=\]

\[=\frac{\text{sen}\,2x+\text{sen}\,2x}{{{\cos }^{2}}x-\text{se}{{\text{n}}^{2}}x}=\frac{2\,\text{sen}\,2x}{\cos 2x}=2\,\text{tg}\,2x\]

\[\frac{\text{tg}\,x}{\cos^2x}=\frac{1+\text{tg}^2x}{\text{cotg}^2x}\]

La solución aquí

La solución aquí

\[\frac{1+\text{t}{{\text{g}}^{2}}x}{\text{cotg}\,x}=\frac{1+\displaystyle\frac{\text{se}{{\text{n}}^{2}}\,x}{{{\cos }^{2}}x}}{\displaystyle\frac{\cos x}{\text{sen}\,x}}=\frac{\displaystyle\frac{{{\cos }^{2}}x+\text{se}{{\text{n}}^{2}}\,x}{{{\cos }^{2}}x}}{\displaystyle\frac{\cos x}{\text{sen}\,x}}=\frac{\displaystyle\frac{1}{{{\cos }^{2}}x}}{\displaystyle\frac{\cos x}{\text{sen}\,x}}=\]

\[=\frac{\text{sen}\,x}{\cos x\cdot {{\cos }^{2}}x}=\frac{\text{sen}\,x}{\cos x}\cdot \frac{1}{\cos {{x}^{2}}}=\frac{\text{tg}\,x}{{{\cos }^{2}}x}\]

Expresiones trigonométricas

Simplificar las siguientes expresiones trigonométricas:

\[\frac{\text{sen}\,\alpha+\text{cotg}\,\alpha}{\text{tg}\,\alpha+\text{cosec}\,\alpha}\]

La solución aquí

La solución aquí

\[\frac{\text{sen}\,\alpha +\text{cotg}\,\alpha }{\text{tg}\,\alpha +\text{cosec}\,\alpha }=\frac{\text{sen}\,\alpha +\displaystyle\frac{\cos \alpha }{\text{sen}\,\alpha }}{\displaystyle\frac{\text{sen}\,\alpha }{\cos \alpha }+\frac{1}{\text{sen}\,\alpha }}=\frac{\displaystyle\frac{\text{se}{{\text{n}}^{2}}\,\alpha +\cos \alpha }{\text{sen}\,\alpha }}{\displaystyle\frac{\text{se}{{\text{n}}^{2}}\,\alpha +\cos \alpha }{\cos \alpha \,\text{sen}\,\alpha }}=\]

\[=\frac{\left( \text{se}{{\text{n}}^{2}}\,\alpha +\cos \alpha \right)\cos \alpha \,\text{sen}\,\alpha }{\left( \text{se}{{\text{n}}^{2}}\,\alpha +\cos \alpha \right)\,\text{sen}\,\alpha }=\cos \alpha\]

\[2\text{tg}\,\alpha\cdot\cos^2\frac{\alpha}{2}-\text{sen}\,\alpha\]

La solución aquí

La solución aquí

\[2\,\text{tg}\,\alpha \cdot {{\cos }^{2}}\frac{\alpha }{2}-\text{sen}\,\alpha =2\frac{\text{sen}\,\alpha }{\cos \alpha }\cdot \frac{1+\cos \alpha }{2}-\text{sen}\,\alpha =\]

\[=\frac{\text{sen}\,\alpha \left( 1+\cos \alpha \right)}{\cos \alpha }-\text{sen}\,\alpha =\frac{\text{sen}\,\alpha +\text{sen}\,\alpha \cos \alpha }{\cos \alpha }-\frac{\text{sen}\,\alpha \cos \alpha }{\cos \alpha }=\]

\[=\frac{\text{sen}\,\alpha }{\cos \alpha }=\text{tg}\,\alpha\]

Ecuaciones trigonométricas

Resolver las siguientes ecuaciones trigonométricas y dar las soluciones dentro del intervalo \(\left[ 0{}^\text{o}\,,\,360{}^\text{o} \right)\) (primera vuelta):

\[\text{tg}\,x+2\text{sen}\,x=0\]

La solución aquí

La solución aquí

\[\text{tg}\,x+2\text{sen}\,x=0\Rightarrow \frac{\text{sen}\,x}{\cos x}+2\text{sen}\,x=0\Rightarrow\]

\[\Rightarrow\text{sen}\,x+2\text{sen}\,x\cos x=0\Rightarrow \text{sen}\,x\left( 1+2\cos x \right)=0\Rightarrow\]

\[\Rightarrow \left\{ \begin{align} & \text{sen}\,x=0\Rightarrow x=0{}^\text{o}\,\,;\,\,x=180{}^\text{o} \\ & \cos x=-\frac{1}{2}\Rightarrow x=120{}^\text{o}\,\,;\,\,x=240{}^\text{o} \\ \end{align} \right. \]

\[\text{sen}\,x\cdot\text{tg}\,x=\frac{\sqrt{3}}{2}\]

La solución aquí

La solución aquí

\[\text{sen }x\cdot \text{tg}\,x=\frac{\sqrt{3}}{6}\Rightarrow \text{sen}\,x\cdot \frac{\text{sen}\,x}{\cos x}=\frac{\sqrt{3}}{6}\Rightarrow\]

\[\Rightarrow 6\,\text{se}{{\text{n}}^{2}}\,x=\sqrt{3}\cos x\Rightarrow 6\left( 1-{{\cos }^{2}}x \right)=\sqrt{3}\cos x\Rightarrow\]

\[\Rightarrow 6-6{{\cos }^{2}}x=\sqrt{3}\cos x\Rightarrow 6{{\cos }^{2}}x+\sqrt{3}\cos x-6=0\]

El discriminante de la ecuación anterior es \(\sqrt{3}^2-4\cdot6\cdot(-6)=3+144=147\). Por tanto:

\[\cos x=\frac{-\sqrt{3}\pm \sqrt{147}}{12}=\frac{-\sqrt{3}\pm \sqrt{{{7}^{2}}\cdot 3}}{12}=\]

\[=\frac{-\sqrt{3}\pm 7\sqrt{3}}{12}=\left\{ \begin{align} & \frac{6\sqrt{3}}{12}=\frac{\sqrt{3}}{2} \\ & \frac{-8\sqrt{3}}{12}=\frac{-2\sqrt{3}}{3} \\ \end{align} \right. \]

Si \(\cos x=\dfrac{\sqrt{3}}{2}\), entonces \($x=30{}^\text{o}\,\,;\,\,x=330{}^\text{o}$\).

Si \(\cos x=\frac{-2\sqrt{3}}{3}\), entonces no existe solución para \(x\) pues \(\dfrac{-2\sqrt{3}}{3}\cong -1,15\), y el coseno no puede ser un número menor que \(-1\).

Sistema de ecuaciones trigonométricas

Resuelve el siguiente sistema de ecuaciones trigonométricas, dando las soluciones en el primer cuadrante.

\[\begin{cases}\text{sen}\,x\cdot\text{sen}\,y=\displaystyle\frac{\sqrt{2}}{4}\\ \displaystyle\cos x\cdot\text{sen}\,y=\frac{\sqrt{6}}{4}\end{cases}\]

La solución aquí

La solución aquí

Dividiendo ambas ecuaciones tenemos:

\[\frac{\text{sen}\,x}{\cos x}=\frac{\displaystyle\frac{\sqrt{2}}{4}}{\displaystyle\frac{\sqrt{6}}{4}}\Rightarrow \text{tg}\,x=\frac{4\sqrt{2}}{4\sqrt{6}}\Rightarrow \text{tg}\,x=\sqrt{\frac{2}{6}}\Rightarrow\]

\[\Rightarrow\text{tg}\,x=\sqrt{\frac{1}{3}}\Rightarrow \text{tg}\,x=\frac{\sqrt{3}}{3}\Rightarrow x=30{}^\text{o}\]

Sustituyendo en la primera ecuación:

\[\text{sen}\,30{}^\text{o}\cdot \text{sen}\,y=\frac{\sqrt{2}}{4}\Rightarrow \frac{1}{2}\text{sen}\,y=\frac{\sqrt{2}}{4}\Rightarrow \text{sen}\,y=\frac{2\sqrt{2}}{4}\Rightarrow\]

\[\Rightarrow\text{sen}\,y=\frac{\sqrt{2}}{2}\Rightarrow y=45{}^\text{o}\]

Sobre Pedro Castro Ortega

Profesor de Matemáticas en el IES "Fernando de Mena" de Socuéllamos (Ciudad Real, Castilla-La Mancha).

Comentar

Su dirección de correo electrónico no será publicada.Los campos necesarios están marcados *

*

Este sitio usa Akismet para reducir el spam. Conoce cómo se procesan los datos de tus comentarios.

x

Check Also

Acceso Universidad Matemáticas II – Matrices, determinantes y sistemas (1)

Este ejercicio de Matemáticas II fue propuesto en septiembre de 2011 por la Universidad de ...

Acceso Universidad Matemáticas II – Integrales y áreas (1)

Este ejercicio de Matemáticas II fue propuesto en junio de 2014 por la Universidad de ...

Acceso Universidad Matemáticas II – Continuidad y derivadas (1)

Este ejercicio de Matemáticas II fue propuesto en junio de 2014 por la Universidad de ...

¿Te atreves? Un problema de matemáticas (3)

El lado desigual de un triángulo isósceles mide \(2\sqrt{2}\) unidades y se encuentra sobre la ...

A %d blogueros les gusta esto: