Home » Análisis » Integrales indefinidas. Cálculo de primitivas (II)

Integrales indefinidas. Cálculo de primitivas (II)

En la entrada anterior sobre integrales indefinidas se obtuvieron las siguientes:

\[\int{\cos^2x\,dx}=\frac{x+\text{sen}\,x\cos x}{2}+C\]

\[\int{\text{sen}^2x\,dx}=\frac{x-\text{sen}\,x\cos x}{2}+C\]

\[\int{x\cos x\,dx}=x\,\text{sen}\,x+\cos x+C\]

\[\int{x\,\text{sen}\,x\,dx}=-x\cos x+\text{sen}\,x+C\]

\[\int{\text{sen}\,x\cos x\,dx}=\frac{\text{sen}^2x}{2}+C=-\frac{\cos^2x}{2}+C\]

 Vamos a calcular un par de ellas más. Para ello utilizaremos algunas de las fórmulas anteriores.

\[\int{x\,\text{sen}^2x\,dx}=\begin{bmatrix}u=x&\text{;}&du=dx\\dv=\text{sen}^2x\,dx&\text{;}&v=\frac{1}{2}(x-\text{sen}\,x\cos x)\end{bmatrix}=\]

\[=\frac{1}{2}x(x-\text{sen}\,x\cos x)-\frac{1}{2}\int{(x-\text{sen}\,x\cos x)\,dx}=\]

\[=\frac{1}{2}x^2-\frac{1}{2}x\,\text{sen}\,x\cos x-\frac{1}{2}\,\frac{x^2}{2}+\frac{1}{2}\,\frac{\text{sen}^2x}{2}+C=\]

\[=\frac{1}{4}x^2-\frac{1}{2}x\,\text{sen}\,x\cos x+\frac{1}{4}\text{sen}^2x+C\]

\[\int{x\cos^2x\,dx}=\int{x(1-\text{sen}^2x)\,dx}=\int{x\,dx}-\int{x\,\text{sen}^2x\,dx}=\]

\[=\frac{1}{2}x^2-\left(\frac{1}{4}x^2-\frac{1}{2}x\,\text{sen}\,x\cos x+\frac{1}{4}\text{sen}^2x+C\right)=\]

\[=\frac{1}{4}x^2+\frac{1}{2}x\,\text{sen}\,x\cos x-\frac{1}{4}\text{sen}^2x+C\]

Si introduces la expresión x*(sin(x))^2 en WolframAlpha obtienes la integral indefinida:

\[\int{x\,\text{sen}^2x\,dx}=\frac{1}{8}\left(2x(x-\text{sen}\,2x)-\cos2x\right)+C\]

que es equivalente a la obtenida anterioremente ya que

\[\frac{1}{8}\left(2x(x-\text{sen}\,2x)-\cos2x\right)=\frac{1}{8}(2x^2-2x\,\text{sen}\,2x-\cos2x)=\]

\[=\frac{1}{4}x^2-\frac{1}{4}x\,2\,\text{sen}\,x\cos x-\frac{1}{8}(\cos^2x-\text{sen}^2x)=\]

\[=\frac{1}{4}x^2-\frac{1}{2}x\,\text{sen}\,x\cos x-\frac{1}{8}(1-2\,\text{sen}^2x)=\]

\[=\frac{1}{4}x^2-\frac{1}{2}x\,\text{sen}\,x\cos x+\frac{1}{4}\text{sen}^2x-\frac{1}{8}\]

Paso a paso WolframAlpha la realiza así:

Sobre Pedro Castro Ortega

Profesor de Matemáticas en el IES "Fernando de Mena" de Socuéllamos (Ciudad Real, Castilla-La Mancha).

Comentar

Su dirección de correo electrónico no será publicada.Los campos necesarios están marcados *

*

Este sitio usa Akismet para reducir el spam. Conoce cómo se procesan los datos de tus comentarios.

x

Check Also

Acceso Universidad Matemáticas II – Geometría (2)

Este ejercicio de Matemáticas II fue propuesto en septiembre de 2011 por la Universidad de ...

Acceso Universidad Matemáticas II – Aplicaciones de las derivadas (1)

Este ejercicio de Matemáticas II fue propuesto en septiembre de 2011 por la Universidad de ...

Acceso Universidad Matemáticas II – Matrices, determinantes y sistemas (2)

Este ejercicio de Matemáticas II fue propuesto en junio de 2014 por la Universidad de ...

Acceso Universidad Matemáticas II – Geometría (1)

Este ejercicio de Matemáticas II fue propuesto en junio de 2014 por la Universidad de ...

A %d blogueros les gusta esto: