Últimas noticias
Home » Álgebra » Potencias. Expresiones algebraicas. Igualdades notables (1)
Una operación con con potencias.

Potencias. Expresiones algebraicas. Igualdades notables (1)

Instrucciones:

Para practicar con estos ejercicios te recomiendo que los copies en tu cuaderno o en hojas aparte, donde debes intentar realizarlos. Una vez que hayas finalizado, comprueba las soluciones haciendo click en el lugar correspondiente. Cuando mires las soluciones, se aconseja hacer una lectura atenta de las observaciones que acompañan, a veces, a cada uno de los ejercicios resueltos.

¡A trabajar!

Ejercicio 1. Reduce las expresiones siguientes:

a)  \(4+x-7(3-2x)\)

b)  \(2(5x-3)+6x-1\)

c)  \((2+a)(2-a)-5(1+a)^2\)

d)  \((b+2)^2-(1-b)(1+b)5\)

La solución aquí

La solución aquí

a)  \(4+x-7(3-2x)=4+x-(21-14x)=4+x-21+14x=15x-17\)

Observaciones:

Este ejercicio es muy sencillo, pero es conveniente hacer algunas observaciones. Según la jerarquía de las operaciones se realizan los productos antes que las sumas y restas. Por eso lo primero que hacemos es el produto \(7(3-2x)\). Para realizar este producto se utiliza la propiedad distributiva respecto de la suma, según la cual:

\[a(b+c)=ab+ac\quad\forall\ a,\,b,\,c\in\mathbb{R}\]

Por eso \(7(3-2x)=7\cdot3-7\cdot2x=21-14x\). Observa que dentro del paréntesis no había una suma, sino una resta. No importa, la propiedad distributiva del producto también es cierta respecto de la resta, ya que restar es sumar el opuesto:

\[a(b-c)=a(b+(-c))=ab+a(-c)=ab+(-ac)=ab-ac\]

También hemos utilizado la propiedad distributiva, pero de derecha a izquierda, cuando hemos terminado de simplificar la operación. Es decir \(x+14x=1x+14x=(1+14)x=15x\). Esta acción también se conoce como “sacar factor común”.

Esto es lo que se llama sumar monomios semejantes. Dos monomios son semejantes cuando tienen la misma parte literal. Para sumarlos o restarlos se suman o se restan los coeficientes y se deja la misma parte literal. Esto, como ves, no es otra cosa que aplicar la propiedad distributiva del producto respecto de la suma o de la resta.

Ahora más que nunca se pone de manifiesto que las matemáticas son un lenguaje, el lenguaje algebraico que nos permite operar con números y símbolos, utilizando una determinadas reglas del juego. Reglas que, por otra parte, son muy sencillas y que se irán poniendo de manifiesto en estos ejercicios.

b)  \(2(5x-3)+6x-1=2\cdot5x-2\cdot3+6x-1=10x-6+6x-1=16x-7\)

c)  \((2+a)(2-a)-5(1+a)^2=2^2-a^2-5(1^2+2\cdot1\cdot a+a^2)=\)

\(=4-a^2-5(1+2a+a^2)=4-a^2-5-10a-5a^2=-6a^2-10a-1\)

Observaciones:

Para reducir esta expresión hemos utilizado dos de las igualdades notables:

Suma por diferencia es igual a diferencia de cuadradados:

\[(a+b)(a-b)=a^2-b^2\]

Cuadrado de una suma es igual a cuadrado del primer sumando, más dos veces el primero por el segundo, más cuadrado del segundo sumando:

\[(a+b)^2=a^2+2ab+b^2\]

Ambas son muy fáciles de demostrar. Veámoslo:

\[(a+b)(a-b)=a(a-b)+b(a-b)=a\cdot a-a\cdot b+b\cdot a-b\cdot b=a^2-b^2\]

Observa la forma en que se ha utilizado aquí, justo al principio, la propiedad distributiva del producto respecto de la suma. Por otro lado es claro que \(-ab+ba=-ab+ab=0\), (no olvidemos nunca la propiedad conmutativa de los números reales: \(ab=b\,a\ \forall\,a,\,b\in\mathbb{R}\)).

Por otro lado:

\[(a+b)^2=(a+b)(a+b)=a\cdot a+a\cdot b+b\cdot a+b\cdot b=\]

\[=a^2+ab+ab+b^2=a^2+2ab+b^2\]

d)  \((b+2)^2-(1-b)(1+b)5=b^2+2\cdot b\cdot2+2^2-(1^2-b^2)5=\)

\(=b^2+4b+4-(1-b^2)5=b^2+4b+4-(5-5b^2)=\)

\(=b^2+4b+4-5+5b^2=6b^2+4b-1\)

Ejercicio 2. Extrae factor común y escribe como producto de factores:

a)  \(xy^2-2x^2y+5x^2y^2\)

b)  \(-6a+12-24b\)

c)  \(12x^2y^2-6xy+4xy^2\)

d)  \(abc+a^2bc^2-ab^2c\)

La solución aquí

La solución aquí

a)  \(xy^2-2x^2y+5x^2y^2=xy(y-2x+5xy)\)

Observaciones:

Recuerda que sacar factor común no es otra cosa que la propiedad distributiva aplicada de derecha a izquierda: \(ab+ac=a(b+c)\). Para sacar al menos un factor común, dicho factor ha de estar al menos una vez en todos y cada uno de los sumandos de la expresión algebraica. En este caso, la expresión algebraica \(xy^2-2x^2y+5x^2y^2\) tiene tres sumandos: \(xy^2\), \(2x^2y\), \(5x^2y^2\). El primero tiene dos factores: \(x\), \(y^2\); el segundo tiene tres: \(2\), \(x^2\), \(y\); y el tercero tiene otros tres: \(5\), \(x^2\), \(y^2\). Tanto la letra \(x\) como la letra \(y\) es común en cada uno de los tres factores (ellas mismas también son factores incluso cuando van elevadas a algún exponente: \(x^2=x\cdot x\), \(y^2=y\cdot y\)). Pues bien, se extraen fuera de la expresión, elevadas al menor de los exponentes. Dentro de la expresión, entre paréntesis, quedan los factores que no se han extraído.

En resumen, es más fácil verlo y hacerlo que explicarlo.

b)  \(-6a+12-24b=-2\cdot3\cdot a+2^2\cdot3-2^3\cdot3\cdot b=\)

\(=2\cdot3(-a+2-2^2b)=6(-a+2-4b)\)

Observación:

En este caso, para extraer factor común los números \(2\) y \(3\), hemos tenido que descomponer previamente en producto de primos, cada uno de los factores numéricos de la expresión. Luego se procede como en el apartado anterior. También se puede hacer el máximo común divisor de los factores numéricos (coeficientes). Éste será el factor común de todos ellos.

c)  \(12x^2y^2-6xy+4xy^2=2^2\cdot3x^2y^2-2\cdot3xy+2^2xy^2=\)

\(=2xy(2\cdot3xy-3+2y)=2xy(6xy-3+2y)\)

Observación:

Muchas veces separamos los factores por un punto “\(\cdot\)”, sobre todo cuando estamos multiplicando números. Esto es para no confundir el producto con otro número. Por ejemplo escribimos \(2\cdot3\) en lugar de \(23\) para no confundir dos por tres con el número veintitrés. Con las letras escribiremos indistintamente \(xy\) o \(x\cdot y\).

Resumiento, el producto se puede indicar con un punto o por yuxtaposición cuando alguno de los factores no es un número. Cuando ambos factores son números es obligatorio indicar el producto con un punto a fin de no confundirlo con otro número.

d)  \(abc+a^2bc^2-ab^2c=abc(1+ac-b)\)

Observación:

En este caso, al extraer factor común \(abc\), aparentemente no queda nada en el lugar de este factor que escribir dentro del paréntesis. Pero sí que queda, ¡el uno!. El número uno siempre esta multiplicando a cualquier expresión, es el elemento neutro del producto: \(1\cdot x=1x=x\ \forall x\in\mathbb{R}\). Muchas veces no se escribe, pero está. Siempre está multiplicando a cualquier factor o expresión que te encuentres.

Ejercicio 3. Simplifica las fracciones siguientes sacando factor común si fuera necesario:

a)  \(\displaystyle\frac{6(x-2)y}{12(2-x)y^2}\)

b)  \(\displaystyle\frac{20a^2-10ab+10a}{10(a-b+1)a}\)

c)  \(\displaystyle\frac{8(a-b)x}{12(b-a)x^2}\)

d)  \(\displaystyle\frac{6a^2+3a-3ab}{3(2a+1-2b)a}\)

La solución aquí

La solución aquí

a)  \(\displaystyle\frac{6(x-2)y}{12(2-x)y^2}=\frac{2\cdot3(x-2)y}{-2^2\cdot3(x-2)y^2}=-\frac{1}{2y}\)

Observaciones:

Para simplificar los factores numéricos se descomponen en producto de primos y luego se eliminan los factores comunes del numerador y del denominador.

Hemos utilizado un “truco” muy habitual en matemáticas: \((a-b)=-(b-a)\). En este caso \((2-x)=-(x-2)\). Así \(x-2\) es un factor común en el numerador y en el denominador y lo podemos eliminar. Observa que el signo menos lo hemos puesto al principio en el denominador pues el orden de los factores no altera el producto. Luego lo hemos puesto delante de la fracción ya que \(\displaystyle\frac{+}{-}=-\)

De nuevo recordar lo que ya se comentó en el ejercicio anterior. En el numerador se elimina todo. Por eso queda arriba el número uno, que siempre es un factor (recuerda: no se pone, pero siempre está).

b)  \(\displaystyle\frac{20a^2-10ab+10a}{10(a-b+1)a}=\frac{10a(2a-b+1)}{10(a-b+1)a}=\frac{2a-b+1}{a-b+1}\)

Observación:

Para poder eliminar factores comunes del numerador y del denominador hemos tenido que sacar factor común en el numerador. El enunciado del ejercicio ya dice que se saque factor común si es necesario (¡qué importante leer bien los enunciados de los ejercicios!). Luego hemos observado que los factores \(10\) y \(a\) son comunes en el numerador y en el denominador y los hemos eliminado.

Hay personas que “simplifican” aún más: \(\displaystyle\frac{2a-b+1}{a-b+1}=\frac{2a}{a}=2\). Pero este procedimiento no es correcto, porque \(b\) y \(1\) no son factores comunes del numerador y del denominador, ¡son sumandos! y, en este caso, aunque sean comunes no se pueden eliminar. Si así fuera llegaríamos a contradicciones como la siguiente:

\[2=\frac{16}{8}=\frac{4+3+9}{4+3+1}=\frac{9}{1}=9\]

¡Cuidado con esto!

c)  \(\displaystyle\frac{8(a-b)x}{12(b-a)x^2}=\frac{2^3(a-b)x}{-2^2\cdot3(a-b)x^2}=-\frac{2}{3x}\)

d)  \(\displaystyle\frac{6a^2+3a-3ab}{3(2a+1-2b)a}=\frac{3a(2a+1-b)}{3(2a+1-2b)a}=\frac{2a+1-b}{2a+1-2b}\)

Ejercicio 4. Simplifica las expresiones siguientes:

a)  \(\displaystyle\frac{(a^2b)^3(ab^2)^2}{(ab)^{-3}}\)

b)  \(\displaystyle\frac{x^6-x^4+x^3}{x^3+x^5-x^7}\)

c)  \(\displaystyle\frac{(x^5y)^2(xy^2)^2}{(x^2y^2)^{-3}}\)

d)  \(\displaystyle\frac{a^5-a^4+a^3}{a^7-a^5+a^4}\)

La solución aquí

La solución aquí

a)  \(\displaystyle\frac{(a^2b)^3(ab^2)^2}{(ab)^{-3}}=\frac{(a^2)^3b^3a^2(b^2)^2}{a^{-3}b^{-3}}=\frac{a^6b^3a^2b^4}{a^{-3}b^{-3}}=\)

\(=\frac{a^8b^7}{a^{-3}b^{-3}}=a^{8-(-3)}b^{7-(-3)}=a^{11}b^{10}\)

Observación:

En cada uno de los pasos se han utilizado distintas propiedades de las potencias:

Potencia de un producto es igual al producto de las potencias:

\[(ab)^n=a^nb^n\]

Potencia de una potencia es igual a la base elevado al producto de los exponentes:

\[(a^n)^m=a^{nm}\]

Producto de potencias de la misma base es igual a la base elevada a la suma de los exponentes:

\[a^na^m=a^{n+m}\]

Cociente de potencias de la misma base es igual a la base elevada a la diferencia de los exponentes:

\[\frac{a^n}{a^m}=a^{n-m}\]

Este ejercicio se podría haber finalizado así:

\(\displaystyle\frac{a^8b^7}{a^{-3}b^{-3}}=a^8b^7\frac{1}{a^{-3}}\frac{1}{b^{-3}}=a^8b^7a^3b^3=a^{8+3}b^{7+3}=a^{11}b^{10}\)

Donde se ha utilizado la potencia de exponente negativo:

\[a^{-n}=\frac{1}{a^n}\quad ;\quad \frac{1}{a^{-n}}=\frac{1}{\displaystyle\frac{1}{a^n}}=a^n\]

Esto a veces se explica diciendo que si en una fracción aparece un factor que sea una potencia con exponente negativo, se puede pasar al otro lado de la fracción con exponente positivo.

Para más información sobre potencias y propiedades de las potencias puedes ver la siguiente presentación sobre potencias.

b)  \(\displaystyle\frac{x^6-x^4+x^3}{x^3+x^5-x^7}=\frac{x^3(x^3-x+1)}{x^3(1+x^2-x^4)}=\frac{x^3-x+1}{1+x^2-x^4}\)

c)  \(\displaystyle\frac{(x^5y)^2(xy^2)^2}{(x^2y^2)^{-3}}=\frac{(x^5)^2y^2x^2(y^2)^2}{(x^2)^{-3}(y^2)^{-3}}=\frac{x^{10}y^2x^2y^4}{x^{-6}y^{-6}}=\)

\(\displaystyle=\frac{x^{12}y^6}{x^{-6}y^{-6}}=x^{12-(-6)}y^{6-(-6)}=x^{18}y^{12}\)

d)  \(\displaystyle\frac{a^5-a^4+a^3}{a^7-a^5+a^4}=\frac{a^3(a^2-a+1)}{a^4(a^3-a+1)}=\frac{a^2-a+1}{a(a^3-a+1)}=\frac{a^2-a+1}{a^4-a^2+a}\)

Sobre Pedro Castro Ortega

Profesor de Matemáticas en el IES “Fernando de Mena” de Socuéllamos (Ciudad Real, Castilla-La Mancha).

Comentar

Su dirección de correo electrónico no será publicada.Los campos necesarios están marcados *

*

x

Check Also

Ecuaciones logarítmicas

En una ecuación logarítmica la incógnita está afectada por un logaritmo. Al igual que ocurría ...

Operaciones con raíces. Radicales (2)

Instrucciones: Para practicar con estos ejercicios te recomiendo que los copies en tu cuaderno o ...

Un número perfecto. 28 ideas asombrosas de la Historia de las Matemáticas

“Un número perfecto. 28 ideas asombrosas de la Historia de las Matemáticas”. Este es el ...

Maxima, un sistema de álgebra computacional

Maxima es un sistema para la manipulación de expresiones simbólicas y numéricas, incluyendo diferenciación, integración, ...

A %d blogueros les gusta esto: