Home » Divulgación de las Matemáticas » La razón entre la diagonal y el lado de un pentágono

La razón entre la diagonal y el lado de un pentágono

Un problema clásico de la geometría, conocido ya en los tiempos de Pitágoras. Un reto para ejercitar nociones básicas de proporcionalidad y semejanza en figuras planas.

El enunciado es el siguiente: calcular la razón entre la diagonal y el lado de un pentágono regular.

La solución aquí

La solución aquí

Llamemos \(A_1\), \(A_2\), \(A_3\), \(A_4\) y \(A_5\) a los vértices del pentágono, \(l\) al lado y \(d\) a la diagonal del pentágono. Sea además \(P\) el punto de corte de las diagonales \(A_1A_3\) y \(A_2A_5\). Como cada diagonal es paralela a un lado del pentágono, se tiene que el cuadrilátero \(PA_3A_4A_5\) es un paralelogramo y, por tanto, \(PA_5=l\) y \(PA_2=d-l\). Como los triángulos \(A_3PA_2\) y \(A_3A_4A_1\) son semejantes (tienen los lados paralelos), se cumple que \(\displaystyle\frac{A_2P}{A_3A_4}=\frac{A_2A_3}{A_1A_3}\) y, sustituyendo el valor de cada segmento en términos de \(l\) y \(d\), tenemos que \(\displaystyle\frac{d-l}{l}=\frac{l}{d}\). Podemos transformar esta última expresión hasta convertirla en una ecuación de segundo grado cuya incógnita es la razón entre la diagonal y el lado del pentágono.

\[\frac{d-l}{l}=\frac{l}{d}\Leftrightarrow\frac{d}{l}-1=\frac{l}{d}\]

Multiplicando todos los términos por \(\displaystyle\frac{d}{l}\) obtenemos:

\[\frac{d^2}{l^2}-\frac{d}{l}=1\Leftrightarrow\left(\frac{d}{l}\right)^2-\frac{d}{l}-1=0\]

Resolviendo la ecuación de segundo grado:

\[\frac{d}{l}=\frac{1\pm\sqrt{(-1)^2-4\cdot1\cdot(-1)}}{2\cdot1}=\frac{1\pm\sqrt{5}}{2}\]

Evidentemente la solución a nuestro problema es la positiva, es decir:

\[\frac{d}{l}=\frac{1+\sqrt{5}}{2}\]

Esta cantidad se conoce con el nombre de número de oro o razón áurea. En este artículo, en concreto en los problemas 4 y 5, puedes encontrar la definición y algunas propiedades del número de oro.

Sobre Pedro Castro Ortega

Profesor de Matemáticas en el IES "Fernando de Mena" de Socuéllamos (Ciudad Real, Castilla-La Mancha).

Comentar

Su dirección de correo electrónico no será publicada.Los campos necesarios están marcados *

*

Este sitio usa Akismet para reducir el spam. Conoce cómo se procesan los datos de tus comentarios.

x

Check Also

Acceso Universidad Matemáticas II – Integrales y áreas (3)

Este ejercicio de Matemáticas II fue propuesto en junio de 2018 por la Universidad de ...

Acceso Universidad Matemáticas II – Geometría (2)

Este ejercicio de Matemáticas II fue propuesto en septiembre de 2011 por la Universidad de ...

Acceso Universidad Matemáticas II – Integrales y áreas (2)

Este ejercicio de Matemáticas II fue propuesto en septiembre de 2011 por la Universidad de ...

Acceso Universidad Matemáticas II – Aplicaciones de las derivadas (1)

Este ejercicio de Matemáticas II fue propuesto en septiembre de 2011 por la Universidad de ...

A %d blogueros les gusta esto: