Últimas noticias
Home » Geometría » Usos de la trigonometría. Cálculo de alturas y distancias (III)

Usos de la trigonometría. Cálculo de alturas y distancias (III)

Ver artículo en formato imprimible (pdf) aquí

Altura de un punto de pie accesible

Para calcular la altura de un punto de pie accesible se pueden presentar dos casos distintos. El primero de ellos, que el suelo sea horizontal (figura 1) y el segundo, que el suelo presente una determinada inclinación (ver figura 2). 

Si el suelo es horizontal (figura 1) el triángulo \(ABC\) es rectángulo y entonces es muy fácil hallar la altura \(h\).

\[\text{tg}\,\alpha=\frac{h}{\overline{CB}}\Rightarrow h=\overline{CB}\cdot\text{tg}\,\alpha\]

Si el suelo presenta una inclinación dada, \(\beta\) (figura 2), conocemos también el ángulo \(\widehat{ACB}=\alpha-\beta\) y el ángulo \(\widehat{CAB}=90^{\text{o}}-\alpha\). Utilizando el teorema de los senos tenemos:

\[\frac{\overline{CB}}{\text{sen}\,\widehat{CAB}}=\frac{x}{\text{sen}\,\widehat{ACB}}\Rightarrow\frac{\overline{CB}}{\text{sen}\,(90^{\text{o}}-\alpha)}=\frac{x}{\text{sen}\,(\alpha-\beta)}\]

Y de aquí podremos despejar con facilidad la altura \(x\):

\[x=\frac{\overline{CB}\cdot\text{sen}\,(\alpha-\beta)}{\text{sen}\,(90^{\text{o}}-\alpha)}\]

  • Ejemplo

Un pasillo plano de 10 metros de largo y que forma un ángulo de \(25^{\text{o}}\) con la horizontal, conduce al pie de una gran torre. Calcular la altura de ésta, sabiendo que desde el inicio del pasillo el ángulo de elevación de su punto más alto es de \(82^{\text{o}}\).

Solución

Llamemos \(x=\overline{AB}\) a la altura de la torre. En este caso \(\overline{CB}=10\), \(\widehat{ACB}=\alpha-\beta=82^{\text{o}}-25^{\text{o}}=57^{\text{o}}\) y \(\widehat{CAB}=90^{\text{o}}-\alpha=90^{\text{o}}-82^{\text{o}}=8^{\text{o}}\). Por tanto:

\[x=\frac{\overline{CB}\cdot\text{sen}\,(\alpha-\beta)}{\text{sen}\,(90^{\text{o}}-\alpha)}=\frac{10\cdot\text{sen}\,57^{\text{o}}}{\text{sen}\,8^{\text{o}}}\Rightarrow x\approxeq60,26\]

Así pues, la altura de la torre es de, aproximadamente, 60,26 metros.

Sobre Pedro Castro Ortega

Profesor de Matemáticas en el IES "Fernando de Mena" de Socuéllamos (Ciudad Real, Castilla-La Mancha).

Comentar

Su dirección de correo electrónico no será publicada.Los campos necesarios están marcados *

*

x

Check Also

Logaritmos. ¿Qué son? Definición, propiedades y ejercicios

Consideremos la ecuación \(2^x=75\). Como quiera que \(2^6=64\) y \(2^7=128\), es fácil darse cuenta de ...

Matemática algorítmica y matemática dialéctica

Para exponer más fácilmente la diferencia de concepción y perspectiva que separa la matemática dialéctica ...

Fracciones. Potencias. Radicales. Ecuaciones (1)

Ecuaciones logarítmicas

En una ecuación logarítmica la incógnita está afectada por un logaritmo. Al igual que ocurría ...

A %d blogueros les gusta esto: