Últimas noticias
Home » Análisis » Volumen de un cuerpo de revolución

Volumen de un cuerpo de revolución

Para calcular el área de una figura por medio de una integral se dividía esta figura en rectangulitos pequeñísimos de base \(dx\) y altura \(f(x)\), y la suma de las áreas de estos infinitos rectangulitos era el área de toda la figura: \(A=\int_a^b f(x)\, dx\) (ver el artículo dedicado a la integral definida).

De la misma manera, para calcular el volumen de un cuerpo, éste puede dividirse en finísimas rebanadas en forma de prisma o de cilindro, y pueden sumarse sus volúmenes por medio de una integral.

Si consideramos el trozo de superficie comprendido entre la curva \(y=f(x)\), el eje \(X\), y las rectas \(x=a\), \(x=b\), éste engendra al girar alrededor del eje \(X\) un cuerpo de revolución.

El volumen \(V\) de este cuerpo vale:

\[V=\pi\int_a^b\left(f(x)\right)^2\, dx\]

Demostración.

Dado un punto \(x\) comprendido entre \(a\) y \(b\), consideremos el rectángulito de base \(dx\) y altura \(f(x)\) (ver figura anterior). Este rectangulito engendra al girar alrededor del eje \(X\) un disco cilíndrico finísimo cuyo volumen vale el área de su base por su altura, es decir, \(\pi\left(f(x)\right)^2 dx\). Si sumamos los volúmenes de todos estos discos cilíndricos finísimos obtenidos de esta forma entre \(a\) y \(b\), tendremos el volumne de todo el cuerpo, es decir:

\[V=\int_a^b\pi\left(f(x)\right)^2\, dx=\pi\int_a^b\left(f(x)\right)^2\, dx\]

  • Ejemplo 1

Hallar el volumen del cuerpo de revolución engendrado al girar alrededor del eje \(X\) la porción de plano comprendida entre la curva \(y=\sqrt{x}\), el eje \(X\), y las rectas \(x=1\), \(x=3\).

El cuerpo de revolución es ciertamente similar al de la figura anterior. Basta pues aplicar la fórmula que acabamos de demostrar:

\[V=\pi\int_1^3(\sqrt{x})^2\, dx=\pi\int_1^3x\, dx=\pi\left[\frac{1}{2}x^2\right]_1^3=4\pi\,\text{uds}^3\]

Si quieres saber más puedes echarle un vistazo al siguiente artículo: “Solidos de revolución. El cuerno de Gabriel“.

← 5. Cálculo de áreas de figuras planas

Sobre Pedro Castro Ortega

Profesor de Matemáticas en el IES “Fernando de Mena” de Socuéllamos (Ciudad Real, Castilla-La Mancha).

Comentar

Su dirección de correo electrónico no será publicada.Los campos necesarios están marcados *

*

x

Check Also

Ecuaciones exponenciales

Digamos que una ecuación exponencial es aquella en la que la incógnita se encuentra en ...

Operaciones con raíces. Radicales (2)

Instrucciones: Para practicar con estos ejercicios te recomiendo que los copies en tu cuaderno o ...

¿Por qué un número no nulo elevado a cero es igual a uno?

El conjunto de los números reales, con las operaciones suma y producto tiene estructura de ...

Maxima, un sistema de álgebra computacional

Maxima es un sistema para la manipulación de expresiones simbólicas y numéricas, incluyendo diferenciación, integración, ...

A %d blogueros les gusta esto: