Home » Análisis » Una integral racional

Una integral racional

Vamos a calcular una primitiva de la función \(f(x)=\dfrac{1}{x^2-a^2}\) donde \(a\) es un número real cualquiera distinto de cero. Es decir, se trata de calcular la integral indefinida \(\displaystyle\int{\frac{1}{x^2-a^2}dx}\). Para ello vamos a descomponer en dos fracciones simples la fracción \(\dfrac{1}{x^2-a^2}\). Como \(x^2-a^2=(x+a)(x-a)\), tenemos:

\[\frac{1}{x^2-a^2}=\frac{E}{x+a}+\frac{F}{x-a}=\frac{E(x-a)+F(x+a)}{(x+a)(x-a)}=\]

\[=\frac{Ex-Ea+Fx+Fa}{x^2-a^2}=\frac{(E+F)x-Ea+Fa}{x^2-a^2}\]

De aquí se deduce, igualando las fracciones algebraicas primera y última, que

\[\begin{cases}E+F=0\\-Ea+Fa=1\end{cases}\Rightarrow\begin{cases}E=-F\\2Fa=1\end{cases}\Rightarrow\begin{cases}E=-\frac{1}{2a}\\F=\frac{1}{2a}\end{cases}\]

Es decir:

\[\frac{1}{x^2-a^2}=\frac{-\frac{1}{2a}}{x+a}+\frac{\frac{1}{2a}}{x-a}\]

Por tanto:

\[\int{\frac{1}{x^2-a^2}dx}=\int{\frac{-\frac{1}{2a}}{x+a}dx}+\int{\frac{\frac{1}{2a}}{x-a}dx}=\]

\[=-\frac{1}{2a}\int{\frac{1}{x+a}dx}+\frac{1}{2a}\int{\frac{1}{x-a}dx}=-\frac{1}{2a}\ln|x+a|+\frac{1}{2a}\ln|x-a|+C=\]

\[=\frac{1}{2a}(\ln|x-a|-\ln|x+a|)+C=\frac{1}{2a}\ln\left|\frac{x-a}{x+a}\right|+C\]

O sea:

\[\int{\frac{1}{x^2-a^2}dx}=\frac{1}{2a}\ln\left|\frac{x-a}{x+a}\right|+C\qquad(1)\]

Ejemplo

Calcular \(\displaystyle\int{\frac{2}{4x^2-1}dx}\)

Solución.

\[\int{\frac{2}{4x^2-1}dx}=2\int{\frac{1}{4x^2-1}dx}=2\int{\frac{\frac{1}{4}}{x^2-\frac{1}{4}}dx}=\]

\[=2\cdot\frac{1}{4}\int{\frac{1}{x^2-\left(\frac{1}{2}\right)^2}dx}=\frac{1}{2}\int{\frac{1}{x^2-\left(\frac{1}{2}\right)^2}dx}\]

La integral \(\displaystyle\int{\frac{1}{x^2-\left(\frac{1}{2}\right)^2}dx}\) es del tipo \(\displaystyle\int{\frac{1}{x^2-a^2}dx}\) con \(a=\dfrac{1}{2}\). Por tanto, usando la fórmula \((1)\):

\[\int{\frac{1}{x^2-\left(\frac{1}{2}\right)^2}dx}=\frac{1}{2\cdot\frac{1}{2}}\ln\left|\frac{x-\frac{1}{2}}{x+\frac{1}{2}}\right|+C=\ln\left|\frac{2x-1}{2x+1}\right|+C\]

Entonces:

\[\int{\frac{2}{4x^2-1}dx}=\frac{1}{2}\int{\frac{1}{x^2-\left(\frac{1}{2}\right)^2}dx}=\frac{1}{2}\ln\left|\frac{2x-1}{2x+1}\right|+C\]

Sobre Pedro Castro Ortega

Profesor de Matemáticas en el IES "Fernando de Mena" de Socuéllamos (Ciudad Real, Castilla-La Mancha).

Comentar

Su dirección de correo electrónico no será publicada.Los campos necesarios están marcados *

*

x

Check Also

¿Te atreves? Un problema de matemáticas (3)

El lado desigual de un triángulo isósceles mide \(2\sqrt{2}\) unidades y se encuentra sobre la ...

La recta en el plano. Paralelismo, perpendicularidad y distancias

Una recta \(r\) está completamente determinada si conocemos un punto suyo \(A(a_1,a_2)\) y un vector \(\vec{u}=(u_1,u_2)\) que ...

El teorema de Bayes. Aproximándonos a la verdad

A principios del año 2017 la editorial RBA se puso en contacto conmigo para ofrecerme ...

¿Te atreves? Un problema de matemáticas (2)

Hasta aquí lo que se pide en el enunciado del problema. Cuando hacemos problemas de ...

A %d blogueros les gusta esto: