Últimas noticias
Home » Análisis » Una integral racional

Una integral racional

Vamos a calcular una primitiva de la función \(f(x)=\dfrac{1}{x^2-a^2}\) donde \(a\) es un número real cualquiera distinto de cero. Es decir, se trata de calcular la integral indefinida \(\displaystyle\int{\frac{1}{x^2-a^2}dx}\). Para ello vamos a descomponer en dos fracciones simples la fracción \(\dfrac{1}{x^2-a^2}\). Como \(x^2-a^2=(x+a)(x-a)\), tenemos:

\[\frac{1}{x^2-a^2}=\frac{E}{x+a}+\frac{F}{x-a}=\frac{E(x-a)+F(x+a)}{(x+a)(x-a)}=\]

\[=\frac{Ex-Ea+Fx+Fa}{x^2-a^2}=\frac{(E+F)x-Ea+Fa}{x^2-a^2}\]

De aquí se deduce, igualando las fracciones algebraicas primera y última, que

\[\begin{cases}E+F=0\\-Ea+Fa=1\end{cases}\Rightarrow\begin{cases}E=-F\\2Fa=1\end{cases}\Rightarrow\begin{cases}E=-\frac{1}{2a}\\F=\frac{1}{2a}\end{cases}\]

Es decir:

\[\frac{1}{x^2-a^2}=\frac{-\frac{1}{2a}}{x+a}+\frac{\frac{1}{2a}}{x-a}\]

Por tanto:

\[\int{\frac{1}{x^2-a^2}dx}=\int{\frac{-\frac{1}{2a}}{x+a}dx}+\int{\frac{\frac{1}{2a}}{x-a}dx}=\]

\[=-\frac{1}{2a}\int{\frac{1}{x+a}dx}+\frac{1}{2a}\int{\frac{1}{x-a}dx}=-\frac{1}{2a}\ln|x+a|+\frac{1}{2a}\ln|x-a|+C=\]

\[=\frac{1}{2a}(\ln|x-a|-\ln|x+a|)+C=\frac{1}{2a}\ln\left|\frac{x-a}{x+a}\right|+C\]

O sea:

\[\int{\frac{1}{x^2-a^2}dx}=\frac{1}{2a}\ln\left|\frac{x-a}{x+a}\right|+C\qquad(1)\]

Ejemplo

Calcular \(\displaystyle\int{\frac{2}{4x^2-1}dx}\)

Solución.

\[\int{\frac{2}{4x^2-1}dx}=2\int{\frac{1}{4x^2-1}dx}=2\int{\frac{\frac{1}{4}}{x^2-\frac{1}{4}}dx}=\]

\[=2\cdot\frac{1}{4}\int{\frac{1}{x^2-\left(\frac{1}{2}\right)^2}dx}=\frac{1}{2}\int{\frac{1}{x^2-\left(\frac{1}{2}\right)^2}dx}\]

La integral \(\displaystyle\int{\frac{1}{x^2-\left(\frac{1}{2}\right)^2}dx}\) es del tipo \(\displaystyle\int{\frac{1}{x^2-a^2}dx}\) con \(a=\dfrac{1}{2}\). Por tanto, usando la fórmula \((1)\):

\[\int{\frac{1}{x^2-\left(\frac{1}{2}\right)^2}dx}=\frac{1}{2\cdot\frac{1}{2}}\ln\left|\frac{x-\frac{1}{2}}{x+\frac{1}{2}}\right|+C=\ln\left|\frac{2x-1}{2x+1}\right|+C\]

Entonces:

\[\int{\frac{2}{4x^2-1}dx}=\frac{1}{2}\int{\frac{1}{x^2-\left(\frac{1}{2}\right)^2}dx}=\frac{1}{2}\ln\left|\frac{2x-1}{2x+1}\right|+C\]

Sobre Pedro Castro Ortega

Profesor de Matemáticas en el IES “Fernando de Mena” de Socuéllamos (Ciudad Real, Castilla-La Mancha).

Comentar

Su dirección de correo electrónico no será publicada.Los campos necesarios están marcados *

*

x

Check Also

Ecuaciones logarítmicas

En una ecuación logarítmica la incógnita está afectada por un logaritmo. Al igual que ocurría ...

Ecuaciones exponenciales

Digamos que una ecuación exponencial es aquella en la que la incógnita se encuentra en ...

Operaciones con raíces. Radicales (2)

Instrucciones: Para practicar con estos ejercicios te recomiendo que los copies en tu cuaderno o ...

¿Por qué un número no nulo elevado a cero es igual a uno?

El conjunto de los números reales, con las operaciones suma y producto tiene estructura de ...

A %d blogueros les gusta esto: