Últimas noticias
Home » Análisis » Una integral racional

Una integral racional

Vamos a calcular una primitiva de la función \(f(x)=\dfrac{1}{x^2-a^2}\) donde \(a\) es un número real cualquiera distinto de cero. Es decir, se trata de calcular la integral indefinida \(\displaystyle\int{\frac{1}{x^2-a^2}dx}\). Para ello vamos a descomponer en dos fracciones simples la fracción \(\dfrac{1}{x^2-a^2}\). Como \(x^2-a^2=(x+a)(x-a)\), tenemos:

\[\frac{1}{x^2-a^2}=\frac{E}{x+a}+\frac{F}{x-a}=\frac{E(x-a)+F(x+a)}{(x+a)(x-a)}=\]

\[=\frac{Ex-Ea+Fx+Fa}{x^2-a^2}=\frac{(E+F)x-Ea+Fa}{x^2-a^2}\]

De aquí se deduce, igualando las fracciones algebraicas primera y última, que

\[\begin{cases}E+F=0\\-Ea+Fa=1\end{cases}\Rightarrow\begin{cases}E=-F\\2Fa=1\end{cases}\Rightarrow\begin{cases}E=-\frac{1}{2a}\\F=\frac{1}{2a}\end{cases}\]

Es decir:

\[\frac{1}{x^2-a^2}=\frac{-\frac{1}{2a}}{x+a}+\frac{\frac{1}{2a}}{x-a}\]

Por tanto:

\[\int{\frac{1}{x^2-a^2}dx}=\int{\frac{-\frac{1}{2a}}{x+a}dx}+\int{\frac{\frac{1}{2a}}{x-a}dx}=\]

\[=-\frac{1}{2a}\int{\frac{1}{x+a}dx}+\frac{1}{2a}\int{\frac{1}{x-a}dx}=-\frac{1}{2a}\ln|x+a|+\frac{1}{2a}\ln|x-a|+C=\]

\[=\frac{1}{2a}(\ln|x-a|-\ln|x+a|)+C=\frac{1}{2a}\ln\left|\frac{x-a}{x+a}\right|+C\]

O sea:

\[\int{\frac{1}{x^2-a^2}dx}=\frac{1}{2a}\ln\left|\frac{x-a}{x+a}\right|+C\qquad(1)\]

Ejemplo

Calcular \(\displaystyle\int{\frac{2}{4x^2-1}dx}\)

Solución.

\[\int{\frac{2}{4x^2-1}dx}=2\int{\frac{1}{4x^2-1}dx}=2\int{\frac{\frac{1}{4}}{x^2-\frac{1}{4}}dx}=\]

\[=2\cdot\frac{1}{4}\int{\frac{1}{x^2-\left(\frac{1}{2}\right)^2}dx}=\frac{1}{2}\int{\frac{1}{x^2-\left(\frac{1}{2}\right)^2}dx}\]

La integral \(\displaystyle\int{\frac{1}{x^2-\left(\frac{1}{2}\right)^2}dx}\) es del tipo \(\displaystyle\int{\frac{1}{x^2-a^2}dx}\) con \(a=\dfrac{1}{2}\). Por tanto, usando la fórmula \((1)\):

\[\int{\frac{1}{x^2-\left(\frac{1}{2}\right)^2}dx}=\frac{1}{2\cdot\frac{1}{2}}\ln\left|\frac{x-\frac{1}{2}}{x+\frac{1}{2}}\right|+C=\ln\left|\frac{2x-1}{2x+1}\right|+C\]

Entonces:

\[\int{\frac{2}{4x^2-1}dx}=\frac{1}{2}\int{\frac{1}{x^2-\left(\frac{1}{2}\right)^2}dx}=\frac{1}{2}\ln\left|\frac{2x-1}{2x+1}\right|+C\]

Sobre Pedro Castro Ortega

Profesor de Matemáticas en el IES "Fernando de Mena" de Socuéllamos (Ciudad Real, Castilla-La Mancha).

Comentar

Su dirección de correo electrónico no será publicada.Los campos necesarios están marcados *

*

x

Check Also

¿Te atreves? Un problema de matemáticas (1)

Referencia. Conde, J.M.; Sepulcre, J.M. Problemas elementales de olimpiadas matemáticas. Publicaciones Universidad de Alicante, 2013.

La solución de la ecuación de segundo grado

Sabemos que una ecuación de segundo grado es una igualdad de la forma \[ax^2+bx+c=0\] donde ...

Virus y notación científica

Un artículo de Xataka Ciencia escrito por Sergio Parra se titula ¿Cuántos virus hay en ...

Fracciones continuas y raíces cuadradas

Rafael Bombelli, matemático italiano nacido en Bolonia, ideó un procedimiento de aproximación de raíces cuadradas ...

A %d blogueros les gusta esto: