Últimas noticias
Home » Análisis » Otros 5 ejercicios sobre continuidad, límites y derivadas
Límite de una función en el punto \(x=1\).

Otros 5 ejercicios sobre continuidad, límites y derivadas

Ejercicio 1

Sea la siguiente función

\[f(x)=\begin{cases}\displaystyle\frac{x+3a}{10}&\text{si}&x<0\\\displaystyle\frac{2x+1}{7x+5}&\text{si}& 0\leq x\leq1\\\displaystyle\frac{\sqrt{x+3}-2}{x-1}&\text{si}&x>1\end{cases}\]

Hallar el valor de \(a\) para que \(f\) sea continua en \(x=0\). Estudiar la continuidad de \(f\) en \(x=1\).

La solución aquí

La solución aquí

\[\begin{cases}\displaystyle\lim_{x\rightarrow0^-}f(x)=\lim_{x\rightarrow0^-}\frac{x+3a}{10}=\frac{3a}{10}\\\displaystyle\lim_{x\rightarrow0^+}f(x)=\lim_{x\rightarrow0^+}\frac{2x+1}{7x+5}=\frac{1}{5}=f(0)\end{cases}\]

Entonces, para que \(f\) sea continua en \(x=0\) debe de ocurrir que

\[\lim_{x\rightarrow0^-}f(x)=\lim_{x\rightarrow0^+}f(x)=f(0)\]

Por tanto:

\[\frac{3a}{10}=\frac{1}{5}\Rightarrow a=\frac{10}{15}=\frac{2}{3}\]

Estudiemos ahora la continudad de la función en \(x=1\).

Por un lado:

\[\lim_{x\rightarrow1^-}f(x)=\lim_{x\rightarrow1^-}\frac{2x+1}{7x+5}=\frac{3}{12}=\frac{1}{4}\]

Por otro lado:

\[\lim_{x\rightarrow1^+}f(x)=\lim_{x\rightarrow1^+}\frac{\sqrt{x+3}-2}{x-1}=\left[\frac{0}{0}\right]=\lim_{x\rightarrow1^+}\frac{(\sqrt{x+3}-2)(\sqrt{x+3}+2)}{(x-1)(\sqrt{x+3}+2)}=\]

\[=\lim_{x\rightarrow1^+}\frac{x+3-4}{(x-1)(\sqrt{x+3}+2)}=\lim_{x\rightarrow1^+}\frac{x-1}{(x-1)(\sqrt{x+3}+2)}=\lim_{x\rightarrow1^+}\frac{1}{\sqrt{x+3}+2}=\frac{1}{4}\]

Como los límites laterales son iguales, entonces existe el límite: \(\displaystyle\lim{x\rightarrow1}f(x)=\dfrac{1}{4}\). Además \(f(1)=\dfrac{1}{4}\). Por tanto \(\displaystyle\lim_{x\rightarrow1}f(x)=f(1)=\dfrac{1}{4}\), y \(f\) es continua en \(x=1\).

Ejercicio 2

Calcular los siguientes límites:

a) \(\displaystyle\lim_{x\rightarrow-\infty}\dfrac{-12x^2+7x+1}{(2x+1)(1-4x)}\) ; b) \(\displaystyle\lim_{x\rightarrow0^-}\left(\dfrac{2}{x}-\dfrac{3}{x+1}\right)\) ;

c) \(\displaystyle\lim_{x\rightarrow+\infty}\left(\sqrt{x^2+x}-\sqrt{x^2-x}\right)\) ; d) \(\displaystyle\lim_{x\rightarrow1}\dfrac{\sqrt{x}-\displaystyle\frac{1}{x}}{x-1}\)

La solución aquí

La solución aquí

a) \(\displaystyle\lim_{x\rightarrow-\infty}\dfrac{-12x^2+7x+1}{(2x+1)(1-4x)}=\lim_{x\rightarrow-\infty}\dfrac{-12x^2+7x+1}{-8x^2-2x-1)}=\dfrac{-12}{-8}=\dfrac{1}{4}\)

b) \(\displaystyle\lim_{x\rightarrow0^-}\left(\dfrac{2}{x}-\dfrac{3}{x+1}\right)=\lim_{x\rightarrow0^-}\dfrac{2(x+1)-3x}{x(x+1)}=\left[\dfrac{0}{0}\right]=-\infty\)

Pero es más fácil hacerlo así: \(\displaystyle\lim_{x\rightarrow0^-}\left(\dfrac{2}{x}-\dfrac{3}{x+1}\right)=-\infty-3=-\infty\)

c) \(\displaystyle\lim_{x\rightarrow+\infty}\left(\sqrt{x^2+x}-\sqrt{x^2-x}\right)=\left[\infty-\infty\right]=\)

\(\displaystyle=\lim_{x\rightarrow+\infty}\dfrac{\left(\sqrt{x^2+x}-\sqrt{x^2-x}\right)\left(\sqrt{x^2+x}+\sqrt{x^2-x}\right)}{\sqrt{x^2+x}+\sqrt{x^2-x}}=\)

\(\displaystyle=\lim_{x\rightarrow+\infty}\dfrac{x^2+x-x^2+x}{\sqrt{x^2+x}+\sqrt{x^2-x}}=\lim_{x\rightarrow+\infty}\dfrac{2x}{\sqrt{x^2+x}+\sqrt{x^2-x}}=\)

\(\displaystyle=\dfrac{2}{1+1}=\dfrac{2}{2}=1\)

d) \(\displaystyle\lim_{x\rightarrow1}\dfrac{\sqrt{x}-\displaystyle\frac{1}{x}}{x-1}=\left[\dfrac{0}{0}\right]=\lim_{x\rightarrow1}\dfrac{x\sqrt{x}-1}{x(x-1)}=\lim_{x\rightarrow1}\dfrac{(x\sqrt{x}-1)(x\sqrt{x}+1)}{x(x-1)(x\sqrt{x}+1)}=\)

\(=\displaystyle\lim_{x\rightarrow1}\dfrac{x^3-1}{x(x-1)(x\sqrt{x}+1)}=\lim_{x\rightarrow1}\dfrac{(x-1)(x^2+x+1)}{x(x-1)(x\sqrt{x}+1)}=\lim_{x\rightarrow1}\dfrac{x^2+x+1}{x(x\sqrt{x}+1)}=\dfrac{3}{2}\)

Ejercicio 3

De la función siguiente calcular el dominio, los puntos de corte con los ejes y las asíntotas. Hacer una representación gráfica aproximada de la misma.

\[f(x)=\frac{x^3-27}{x^2-2x-15}\]

La solución aquí

La solución aquí

Las soluciones de \(x^2-2x-15=0\) son \(x=-3\) y \(x=5\). Por tanto \(\text{Dom}\,f=\mathbb{R}-\{-3\,,\,5\}\).

\(\dfrac{x^3-27}{x^2-2x-15}=0\Rightarrow x^3-27=0\Rightarrow x^3=27\Rightarrow x=\sqrt[3]{27}=3\). Por tanto el punto de corte con el eje \(X\) es \((3\,,\,0)\).

\(\dfrac{0^3-27}{0^2-2\cdot0-15}=\dfrac{-27}{-15}=\dfrac{9}{5}\), lo que quiere decir que el punto de corte con el eje \(Y\) es \(\left(0\,,\,\dfrac{9}{5}\right)\).

\(\displaystyle\lim_{x\rightarrow-3}\dfrac{x^3-27}{x^2-2x-15}=\left[\dfrac{-54}{0}\right]=\begin{cases}-\infty&si&x\rightarrow-3^-\\+\infty&si&x\rightarrow-3^+\end{cases}\)

\(\displaystyle\lim_{x\rightarrow5}\dfrac{x^3-27}{x^2-2x-15}=\left[\dfrac{98}{0}\right]=\begin{cases}-\infty&si&x\rightarrow5^-\\+\infty&si&x\rightarrow5^+\end{cases}\)

De lo anterior se deduce que \(x=-3\) y \(x=5\) son asíntotas verticales de la función.

\(\displaystyle\lim_{x\rightarrow\infty}\dfrac{x^3-27}{x^2-2x-15}=\begin{cases}+\infty&si&x\rightarrow+\infty\\-\infty&si&x\rightarrow-\infty\end{cases}\), lo que quiere decir que \(f\) no tiene asíntotas horizontales.

Al dividir \(x^3-27\) entre \(x^2-2x-15\) se obtiene de cociente \(x+2\), lo que significa que \(y=x+2\) es una asíntota oblicua de la función.

Representación gráfica:

Ejercicio 4

Hallar, usando la definición, la derivada de la función \(f(x)=\dfrac{x-3x^2}{1-2x^2}\) en el punto \(x=1\).

La solución aquí

La solución aquí

\(\displaystyle\lim_{x\rightarrow1}\dfrac{f(x)-f(1)}{x-1}=\lim_{x\rightarrow1}\dfrac{\displaystyle\frac{x-3x^2}{1-2x^2}-2)}{x-2}=\lim_{x\rightarrow1}\dfrac{\displaystyle\frac{x-3x^2-2(1-2x^2)}{1-2x^2}}{x-1}=\)

\(=\displaystyle\lim_{x\rightarrow1}\dfrac{x-3x^2-2+4x^2}{(x-1)(1-2x^2)}=\lim_{x\rightarrow1}\dfrac{x^2+x-2}{(x-1)(1-2x^2)}=\)

\(=\displaystyle\lim_{x\rightarrow1}\dfrac{(x-1)(x+2)}{(x-1)(1-2x^2)}=\lim_{x\rightarrow1}\dfrac{x+2}{1-2x^2}=\dfrac{3}{-1}=-3\)

Entonces \(f'(1)=-3\).

Ejercicio 5

Hallar la derivada de las siguientes funciones y simplificar el resultado en la medida de lo posible.

a) \(f(x)=\dfrac{5x^2+2x^3-10x+1}{5}\)  ;  b) \(f(x)=\dfrac{x-3x^2}{1-2x^2}\)  ;

c) \(f(x)=x^2\cdot(\sqrt{x}-1)\)  ;  d) \(f(x)=\left(\dfrac{2}{x}-\dfrac{1}{x^3}\right)\cdot x^2\)

La solución aquí

La solución aquí

a) \(f(x)=\dfrac{5x^2+2x^3-10x+1}{5}=\dfrac{1}{5}(5x^2+2x-10x+1)\).

Entonces \(f'(x)=\dfrac{1}{5}(10x+6x^2-10)=2x+\dfrac{6}{5}x^2-2\)

Otra forma (más enrevesada, utilizando la regla de derivación de un cociente):

\(\displaystyle f'(x)=\dfrac{(10x+6x^2-10)\cdot5-(5x^2+2x^3-10x+1)\cdot0}{5^2}=\)

\(\displaystyle=\dfrac{50x+30x^2-50}{25}=2x+\dfrac{6}{5}x^2-2\)

b) Usando otra vez la regla de derivación de un cociente tenemos:

\(f'(x)=\dfrac{(1-6x)(1-2x^2)-(x-3x^2)(-4x)}{(1-2x^2)^2}=\)

\(=\dfrac{1-2x^2-6x+12x^2+4x^2-12x^3}{(1-2x^2)^2}=\dfrac{2x^2-6x+1}{(1-2x^2)^2}\)

c) \(f'(x)=2x(\sqrt{x}-1)+x^2\dfrac{1}{2\sqrt{x}}=2x\sqrt{x}-2x+\dfrac{x^2}{2\sqrt{x}}=\)

\(=\dfrac{4x^2-4x\sqrt{x}+x^2}{2\sqrt{x}}=\dfrac{5x^2-4x\sqrt{x}}{2\sqrt{x}}=\dfrac{5x^2\sqrt{x}-4x^2}{2x}=\dfrac{5x\sqrt{x}-4x}{2}\)

Otra forma, expresando previamente la función de otra manera equivalente.

\(f(x)=x^2\cdot(\sqrt{x}-1)=x^2\sqrt{x}-x^2=x^2\cdot x^{1/2}-x^2=x^{5/2}-x^2\Rightarrow\)

\(\Rightarrow f'(x)=\dfrac{5}{2}x^{3/2}-2x=\dfrac{5}{2}\sqrt{x^3}-2x=\dfrac{5x\sqrt{x}}{2}-2x=\dfrac{5x\sqrt{x}-4x}{2}\)

d) \(f(x)=\left(\dfrac{2}{x}-\dfrac{1}{x^3}\right)\cdot x^2=\dfrac{2x^2}{x}-\dfrac{x^2}{x^3}=2x-\dfrac{1}{x}\Rightarrow\)

\(\Rightarrow f'(x)=2-\dfrac{-1}{x^2}=\dfrac{2x^2+1}{x^2}\)

Hagámoslo de otra manera:

\(f(x)=\left(\dfrac{2}{x}-\dfrac{1}{x^3}\right)\cdot x^2=\dfrac{2x^2-1}{x^3}\cdot x^2=\dfrac{(2x^2-1)x^2}{x^3}=\dfrac{2x^2-1}{x}\Rightarrow\)

\(\Rightarrow f'(x)=\dfrac{4x\cdot x-(2x^2-1)\cdot1}{x^2}=\dfrac{4x^2-2x^2+1}{x^2}=\dfrac{2x^2+1}{x^2}\)

Comentar

Su dirección de correo electrónico no será publicada.Los campos necesarios están marcados *

*

x

Check Also

entero

Mira hacia delante y ve el horizonte plagado de cepas. Y el sol reverbera cálido, ...

Las matemáticas y yo

Yo y las matemáticas. Mis matemáticas y yo. Las matemáticas son mi vida. Las matemáticas ...

Movimiento en un plano vertical

Aceleración de la gravedad Todos los cuerpos en caída libre cerca de la superficie terrestre, ...

Integrales indefinidas y cálculo de áreas

Uno de los problemas típicos que se proponen siempre en Selectividad, en la materia de ...