Últimas noticias
Home » Análisis » El método de integración por partes
El método de integración por partes.

El método de integración por partes

El método de integración por partes se deduce de la regla de derivación de un producto. Dadas dos funciones \(f\) y \(g\) tenemos que:

\[\left(f(x)\cdot g(x)\right)’=f'(x)\cdot g(x)+f(x)\cdot g'(x)\]

Si despejamos el último sumando la expresión anterior la podemos escribir así:

\[f(x)\cdot g'(x)=\left(f(x)\cdot g(x)\right)’-f'(x)\cdot g(x)\]

Integrando las funciones de ambos miembros de la igualdad tendremos:

\[\int f(x)\cdot g'(x)dx=f(x)\cdot g(x)-\int f'(x)\cdot g(x)dx\]

Si cambiamos la variable llamando \(u=f(x)\) y \(v=g(x)\) tendremos que \(du=f'(x)dx\) y \(dv=g'(x)dx\), con lo que sustituyendo en la expresión anterior:

\[\int udv=uv-\int vdu\]

La anterior se conoce con el nombre de fórmula de integración por partes.

La integración por partes es útil cuando la función a integrar puede considerarse como el producto de una función \(u\), cuya derivada es más sencilla que \(u\), por otra función que claramente es de la forma \(dv\) (función \(v\) cuya derivada es \(dv\)).

Veamos algunos ejemplos que ilustren el método de integración por partes.

  • Ejemplo 1

\[\int xe^xdx=\begin{bmatrix}u=x &;&du=dx\\dv=e^xdx&;&v=e^x\end{bmatrix}=xe^x-\int e^xdx=xe^x-e^x+C\]

  • Ejemplo 2

\[\int x\text{sen} xdx=\begin{bmatrix}
u=x &;&du=dx\\
dv=\text{sen} xdx&;&v=-\cos x
\end{bmatrix}=\]

\[=-x\cos x-\int-\cos xdx=-x\cos x+\text{sen} x+C\]

  • Ejemplo 3

\[\int\ln xdx=\begin{bmatrix}u=\ln x &;&du=\dfrac{1}{x}dx\\dv=dx&;&v=x\end{bmatrix}=\]

\[=x\ln x-\int x\frac{1}{x}dx=x\ln x-\int dx=x\ln x-x+C\]

A veces se utiliza la integración por partes para hallar \(\int h\) en función, otra vez, de \(\int h\), y después despejar \(\int h\) en la ecuación resultante.

  • Ejemplo 4

\[\int\dfrac{\ln x}{x}dx=\begin{bmatrix}
u=\ln x &;&du=\dfrac{1}{x}dx\\
dv=\dfrac{1}{x}dx&;&v=\ln x
\end{bmatrix}=\ln x\ln x-\int \frac{\ln x}{x}dx\Rightarrow\]

\[\Rightarrow 2\int \frac{\ln x}{x}dx=\ln^2x\Rightarrow\int \frac{\ln x}{x}dx=\frac{\ln^2 x}{2}+C\]

Otras veces hay que aplicar lo anterior pero integrando por partes más de una vez, lo que requerirá un cálculo algo más elaborado.

  • Ejemplo 5

\[\int e^x\text{sen} xdx=\begin{bmatrix}u=e^x &;&du=e^xdx\\dv=\text{sen} xdx&;&v=-\cos x\end{bmatrix}=-e^x\cos x+\int e^x\cos xdx=\]

\[=\begin{bmatrix}u=e^x &;&du=e^xdx\\dv=\cos xdx&;&v=\text{sen} x\end{bmatrix}=-e^x\cos x+e^x\text{sen} x-\int e^x\text{sen} xdx\Rightarrow\]

\[\Rightarrow2\int e^x\text{sen} xdx=e^x\text{sen} x-e^x\cos x\Rightarrow \int e^x\text{sen x}dx=\frac{e^x(\text{sen} x-\cos x)}{2}+C\]

Debido a que la integración por partes está basada en el reconocimiento de que una función es de la forma \(dv\) (la derivada de otra), cuantas más funciones sepamos integrar tanto mayores serán nuestras posibilidades de éxito. Con frecuencia es conveniente hacer una integración preliminar antes de abordar el problema principal.

  • Ejemplo 6

En este ejemplo vamos a utilizar que \(\displaystyle\int\ln xdx=x\ln x-x\) (que se dedujo en el ejemplo 3 integrando por partes).

\[\int\ln^2xdx=\int\ln x\ln xdx=\begin{bmatrix}
u=\ln x &;&du=\dfrac{1}{x}dx\\
dv=\ln xdx&;&v=x\ln x-x
\end{bmatrix}=\]

\[=\ln x(x\ln x-x)-\int\frac{x\ln x-x}{x}dx=x\ln^2x-x\ln x-\int(\ln x-1)dx=\]

\[=x\ln^2x-x\ln x-(x\ln x-x)+x+C=x\ln^2x-2x\ln x+2x+C\]

Utilizando la fórmula \(\displaystyle\text{sen}^2x=\frac{1-\cos2x}{2}\) es fácil deducir la integral de la función \(\text{sen}^2x\):

\[\int\text{sen}^2xdx=\int\frac{1-\cos2x}{2}dx=\int\frac{1}{2}dx-\frac{1}{2}\int\cos2x=\frac{x}{2}-\frac{\text{sen} 2x}{4}+C\]

Aunque el procedimiento es más largo, seguiremos ilustrando el método de integración por partes para deducir el resultado anterior.

  • Ejemplo 7

\[\int\text{sen}^2xdx=\begin{bmatrix}
u=\text{sen}^2x &;&du=2\text{sen} x\cos xdx\\
dv=dx&;&v=x
\end{bmatrix}=\]

\[=x\text{sen}^2x-\int2x\text{sen} x\cos xdx=x\text{sen}^2x-\int x\text{sen}2xdx=\]

\[=\begin{bmatrix}u=x &;&du=dx\\dv=\text{sen}2xdx&;&\displaystyle v=-\frac{\cos2x}{2}\end{bmatrix}=x\text{sen}^2x-\left[-\frac{x\cos2x}{2}+\int\frac{\cos2x}{2}\right]=\]

\[=x\text{sen}^2x+\frac{x\cos 2x}{2}-\frac{\text{sen}2x}{4}+C=\frac{2x\text{sen}^2x}{2}+\frac{x\cos^2x-x\text{sen}^2x}{2}-\frac{\text{sen}2x}{4}+C=\]

\[=\frac{x\text{sen}^2x+x(1-\text{sen}^2x)}{2}-\frac{\text{sen}2x}{4}+C=\frac{x}{2}-\frac{\text{sen}2x}{4}+C\]

Finalmente integraremos por partes las funciones arcotangente, arcoseno y arcocoseno.

  • Ejemplo 8

\[\int\text{arctg} xdx=\begin{bmatrix}u=\text{arctg} x &;&du=\dfrac{1}{1+x^2}dx\\dv=dx&;&v=x\end{bmatrix}=\]

\[=x\text{arctg} x-\int \frac{x}{1+x^2}dx=x\text{arctg} x-\frac{1}{2}\ln(1+x^2)+C\]

  • Ejemplo 9

\[\int\text{arcsen} xdx=\begin{bmatrix}
u=\text{arcsen} x &;&du=\dfrac{1}{\sqrt{1-x^2}}dx\\
dv=dx&;&v=x
\end{bmatrix}=\]

\[=x\text{arcsen} x-\int \frac{x}{\sqrt{1-x^2}}dx=x\text{arcsen} x+\sqrt{1-x^2}+C\]

  • Ejemplo 10

\[\int\arccos xdx=\begin{bmatrix}
u=\arccos x &;&du=\dfrac{-1}{\sqrt{1-x^2}}dx\\
dv=dx&;&v=x
\end{bmatrix}=\]

\[=x\arccos x-\int \frac{-x}{\sqrt{1-x^2}}dx=x\arccos x-\sqrt{1-x^2}+C\]

Sobre Pedro Castro Ortega

Profesor de Matemáticas en el IES "Fernando de Mena" de Socuéllamos (Ciudad Real, Castilla-La Mancha).

Comentar

Su dirección de correo electrónico no será publicada.Los campos necesarios están marcados *

*

x

Check Also

Logaritmos. ¿Qué son? Definición, propiedades y ejercicios

Consideremos la ecuación \(2^x=75\). Como quiera que \(2^6=64\) y \(2^7=128\), es fácil darse cuenta de ...

Resolución de triángulos

Partimos del conocimiento de las razones trigonoméricas de un ángulo agudo sobre un triángulo rectángulo. ...

Fracciones. Potencias. Radicales. Ecuaciones (1)

Ecuaciones exponenciales

Digamos que una ecuación exponencial es aquella en la que la incógnita se encuentra en ...

A %d blogueros les gusta esto: