Últimas noticias
Home » Análisis » La función de proporcionalidad inversa. La función hiperbólica. Hipérbolas

La función de proporcionalidad inversa. La función hiperbólica. Hipérbolas

Ver artículo en formato imprimible (pdf) aquí

La función de proporcionalidad inversa es una función real de variable real cuya ecuación viene dada por \(f(x)=\dfrac{k}{x}\), donde \(k\) es un número real distinto de cero. La gráfica de la función de proporcionalidad inversa es una hipérbola. Es muy fácil darse cuenta de que si \(x\rightarrow\pm\infty\), entonces \(f(x)\rightarrow0\); y si \(x\rightarrow0\), entonces \(f(x)\rightarrow\pm\infty\). Es decir:

\[\lim_{x\to\pm\infty}\frac{k}{x}=0\quad\text{;}\quad\lim_{x\to0}\frac{k}{x}=\pm\infty\]

De lo anterior se deduce que las asíntotas de la función son el eje \(X\) (asíntota horizontal de ecuación \(y=0\)) y el eje \(Y\) (asíntota vertical de ecuación \(x=0\)).

Así pues, la gráfica de la función de proporcionalidad inversa es una hipérbola de asíntotas los ejes de coordenadas. La situación de las dos ramas de la hipérbola viene determinada por el signo de \(k\). Si \(k>0\) las ramas de la hipérbola se encuentran en el primer y tercer cuadrantes. Y si \(k<0\) las ramas de la hipérbola se encuentran en el segundo y cuarto cuadrantes. En la figura siguiente están representadas las funciones \(f(x)=\dfrac{2}{x}\) (en color rojo) y \(f(x)=\dfrac{-2}{x}\) (en color azul).

Las funciones del tipo \(f(x)=\dfrac{a}{cx}\) no son distintas de las anteriores pues \(\dfrac{a}{cx}=\dfrac{a/c}{x}\), con lo que se trata de funciones de proporcionalidad inversa con \(k=\dfrac{a}{c}\).

Si la función es del tipo \(f(x)=\dfrac{a}{cx+d}\), su gráfica también es una hipérbola. En este caso:

\[\lim_{x\to\pm\infty}\frac{a}{cx+d}=0\quad\text{;}\quad\lim_{x\to-d/c}\frac{a}{cx+d}=\pm\infty\]

Ahora la asíntota horizontal vuelve a ser el eje \(X\) (\(y=0\)), y la asíntota vertical es la recta \(x=-\dfrac{d}{c}\).

Por ejemplo, la representación gráfica de la función \(f(x)=\dfrac{3}{-2x+6}\) es una hipérbola de asíntotas \(y=0\), \(x=-\dfrac{6}{-2}\Rightarrow x=3\):

En general, las funciones del tipo \(f(x)=\dfrac{ax+b}{cx+d}\) (funciones racionales donde los polinomios del numerador y del denominador son de grado 1), son hipérbolas de asíntota horizontal \(y=\dfrac{a}{c}\) y asíntota vertical \(x=-\dfrac{d}{c}\).

La razón es porque, por un lado, (recuérdese cómo se resolvía, para las funciones racionales, la indeterminación “infinito partido por infinito”).

\[\lim_{x\to\pm\infty}\frac{ax+b}{cx+d}=\frac{a}{c}\]

Y, por otro, porque

\[\lim_{x\to-d/c}\frac{ax+b}{cx+d}=\frac{k}{0}=\pm\infty\]

Teniendo en cuenta lo anterior y los puntos de corte con los ejes, es muy fácil hacerse una idea de la representación gráfica de una hipérbola del tipo general \(f(x)=\dfrac{ax+b}{cx+d}\).

Por ejemplo, imaginemos que nos piden representar la hipérbola de ecuación \(\dfrac{-3x+6}{x-1}\).

Según lo razonado anteriormente la asíntota horizontal de la hipérbola es \(y=-3\), y la asíntota vertical es \(x=1\). Además:

\[\lim_{x\to1}\frac{-3x+6}{x-1}=\begin{cases}-\infty\quad\text{si}\quad x\rightarrow1^-\\+\infty\quad\text{si}\quad x\rightarrow1^+\end{cases}\]

Por otro lado, el punto de corte con el eje \(X\) es \((2, 0)\), y el punto de corte con el eje \(Y\) es \((0, -6)\).

Con los datos anteriores es bastante fácil dibujar la hipérbola. En la gráfica siguiente está representada en color rojo. En color azul se han representado las asíntotas de la misma.

Sobre Pedro Castro Ortega

Profesor de Matemáticas en el IES “Fernando de Mena” de Socuéllamos (Ciudad Real, Castilla-La Mancha).

Comentar

Su dirección de correo electrónico no será publicada.Los campos necesarios están marcados *

*

x

Check Also

Ecuaciones logarítmicas

En una ecuación logarítmica la incógnita está afectada por un logaritmo. Al igual que ocurría ...

Ecuaciones exponenciales

Digamos que una ecuación exponencial es aquella en la que la incógnita se encuentra en ...

Operaciones con raíces. Radicales (2)

Instrucciones: Para practicar con estos ejercicios te recomiendo que los copies en tu cuaderno o ...

¿Por qué un número no nulo elevado a cero es igual a uno?

El conjunto de los números reales, con las operaciones suma y producto tiene estructura de ...

A %d blogueros les gusta esto: