Home » Análisis » La regla de L’Hôpital y el cálculo de límites
Un límite que se puede calcular usando la regla de L'Hôpital.

La regla de L’Hôpital y el cálculo de límites

La regla de L’Hôpital permite calcular límites que presentan la indeterminación “cero partido por cero”.

Debemos enunciar la regla con rigor pues en ella hay que asegurarse de que las dos funciones que intervienen (la del numerador y la del denominador) son ambas derivables en un entorno del punto donde se quiere hallar el límite.

Es decir, si \(f\) y \(g\) son dos funciones derivables en un entorno de un punto \(a\), con

\[\lim_{x\to a}f(x)=0\quad\text{;}\quad\lim_{x\to a}g(x)=0\]

y existe

\[\lim_{x\to a}\frac{f'(x)}{g'(x)}\]

entonces también existe

\[\lim_{x\to a}\frac{f(x)}{g(x)}\]

y se cumple que

\[\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)}\]

En resumen:

\[\lim_{x\to a}\frac{f(x)}{g(x)}=\left[\frac{0}{0}\right]\ ,\ \lim_{x\to a}\frac{f'(x)}{g'(x)}=L\ \Rightarrow\ \lim_{x\to a}\frac{f(x)}{g(x)}=L\]

Por ejemplo, supongamos que queremos calcular el siguiente límite:

\[\displaystyle \lim_{x\to0}\dfrac{e^x-1-x}{x^2}\]

Tomando \(f(x)=e^x-1-x\) y \(g(x)=x^2\) se tiene que \(\displaystyle \lim_{x\to0}f(x)=0\) y que \(\displaystyle\lim_{x\to0}g(x)=0\) (nos encontramos pues con una indeterminación del tipo “cero partido por cero”). Como \(f\) y \(g\) son claramente derivables en todo \(\mathbb{R}\) podemos aplicar la regla de L’Hôpital.

\[ \lim_{x\to0}\dfrac{f'(x)}{g'(x)}=\lim_{x\to0}\dfrac{e^x-1}{2x}\]

El límite anterior vuelve a presentar la indeterminación del tipo \(\dfrac{0}{0}\).

Obsérvese que estamos en condiciones de volver a aplicar la regla de L’Hôpital, con lo que derivando otra vez numerador y denominador se tiene:

\[\displaystyle \lim_{x\to0}\dfrac{f”(x)}{g”(x)}=\lim_{x\to0}\dfrac{e^x}{2}=\dfrac{1}{2}\]

Entonces, por la regla de L’Hôpital,

\[\displaystyle \lim_{x\to0}\dfrac{f”(x)}{g”(x)}=\dfrac{1}{2}\Rightarrow\lim_{x\to0}\dfrac{f'(x)}{g'(x)}=\dfrac{1}{2}\Rightarrow\lim_{x\to0}\dfrac{f(x)}{g(x)}=\dfrac{1}{2}\]

Así pues:

\[ \lim_{x\to0}\frac{e^x-1-x}{x^2}=\frac{1}{2}\]

 En esta presentación tienes otro ejemplo de cálculo de un límite utilizando esta regla

Por cierto. El límite calculado en la presentación anterior requiere de aplicar dos veces la regla de L’Hôpital. La segunda vez que se aplica se vuelven a derivar, después de simplificar, las funciones que aparecen en el numerador y en el denominador. Pero se podría haber hecho también de otra manera similar. ¿Sabes cómo?

La regla de L’Hôpital también se puede aplicar cuando aparece la indeterminación “infinito partido por infinito”. Como resumen práctico diremos que los límites del tipo \(\displaystyle\lim_{x\to a}\frac{f(x)}{g(x)}\), donde \(a\) es \(-\infty\), \(+\infty\) o un número, si dan lugar a una indeterminación del tipo \(\dfrac{0}{0}\) o \(\dfrac{\infty}{\infty}\), pueden obtenerse derivando numerador y denominador y calculando (si existe) el límite del cociente de sus derivadas. A veces, después de este primer paso, se llega a otra indeterminación, por lo que se puede repetir el proceso. Hay indeterminaciones del tipo \(\infty-\infty\), \(1^{\infty}\) u otras que, con un poco de habilidad, se puede poner en forma de cociente para poder aplicar la regla de L’Hôpital.

En este enlace puedes encontrar, completamente resueltos, muchos más límites que se propuesieron en las pruebas de selectividad de la universidad de Castilla-La Mancha.

Sobre Pedro Castro Ortega

Profesor de Matemáticas en el IES “Fernando de Mena” de Socuéllamos (Ciudad Real, Castilla-La Mancha).

Comentar

Su dirección de correo electrónico no será publicada.Los campos necesarios están marcados *

*

x

Check Also

Operaciones con raíces. Radicales (2)

Instrucciones: Para practicar con estos ejercicios te recomiendo que los copies en tu cuaderno o ...

¿Por qué un número no nulo elevado a cero es igual a uno?

El conjunto de los números reales, con las operaciones suma y producto tiene estructura de ...

Maxima, un sistema de álgebra computacional

Maxima es un sistema para la manipulación de expresiones simbólicas y numéricas, incluyendo diferenciación, integración, ...

Cinco problemas de matemáticas inspirados en la antigua China

Hace un tiempo escribí un artículo dedicado al árbelos. En él me refería a un ...

A %d blogueros les gusta esto: